Eykyn Thomas R, Elliott Stuart J, Kuchel Philip W
School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom.
Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - FRE 2034 Université de Lyon / CNRS / Université Claude Bernard Lyon 1 / ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France.
Magn Reson (Gott). 2021 Jun 15;2(1):421-446. doi: 10.5194/mr-2-421-2021. eCollection 2021.
We describe an approach to formulating the kinetic master equations of the time evolution of NMR signals in reacting (bio)chemical systems. Special focus is given to studies that employ signal enhancement (hyperpolarization) methods such as dissolution dynamic nuclear polarization (dDNP) and involving nuclear spin-bearing solutes that undergo reactions mediated by enzymes and membrane transport proteins. We extend the work given in a recent presentation on this topic (Kuchel and Shishmarev, 2020) to now include enzymes with two or more substrates and various enzyme reaction mechanisms as classified by Cleland, with particular reference to non-first-order processes. Using this approach, we can address some pressing questions in the field from a theoretical standpoint. For example, why does binding of a hyperpolarized substrate to an enzyme cause an appreciable loss of the signal from the substrate or product? Why does the concentration of an unlabelled pool of substrate, for example C lactate, cause an increase in the rate of exchange of the C-labelled pool? To what extent is the equilibrium position of the reaction perturbed during administration of the substrate? The formalism gives a full mechanistic understanding of the time courses derived and is of relevance to ongoing clinical trials using these techniques.
我们描述了一种用于推导反应性(生物)化学系统中核磁共振信号随时间演化的动力学主方程的方法。特别关注采用信号增强(超极化)方法的研究,如溶解动态核极化(dDNP),以及涉及由酶和膜转运蛋白介导反应的含核自旋溶质。我们将近期关于该主题的一次报告(Kuchel和Shishmarev,2020)中的工作进行了扩展,现在涵盖了具有两种或更多底物的酶以及Cleland分类的各种酶反应机制,特别涉及非一级过程。通过这种方法,我们可以从理论角度解决该领域的一些紧迫问题。例如,为什么超极化底物与酶的结合会导致底物或产物信号的显著损失?为什么未标记底物池(例如C乳酸盐)的浓度会导致C标记池的交换速率增加?在给予底物期间,反应的平衡位置受到多大程度的扰动?该形式体系对所推导的时间进程给出了完整的机制理解,并且与使用这些技术的正在进行的临床试验相关。