Suppr超能文献

一种用于在发育共振峰数据中分离元音类型和声道长度的统计共振峰模式模型。

A statistical, formant-pattern model for segregating vowel type and vocal-tract length in developmental formant data.

作者信息

Turner Richard E, Walters Thomas C, Monaghan Jessica J M, Patterson Roy D

机构信息

Gatsby Computational Neuroscience Unit, Alexandra House, 17 Queen Square, London, United Kingdom.

出版信息

J Acoust Soc Am. 2009 Apr;125(4):2374-86. doi: 10.1121/1.3079772.

Abstract

This paper investigates the theoretical basis for estimating vocal-tract length (VTL) from the formant frequencies of vowel sounds. A statistical inference model was developed to characterize the relationship between vowel type and VTL, on the one hand, and formant frequency and vocal cavity size, on the other. The model was applied to two well known developmental studies of formant frequency. The results show that VTL is the major source of variability after vowel type and that the contribution due to other factors like developmental changes in oral-pharyngeal ratio is small relative to the residual measurement noise. The results suggest that speakers adjust the shape of the vocal tract as they grow to maintain a specific pattern of formant frequencies for individual vowels. This formant-pattern hypothesis motivates development of a statistical-inference model for estimating VTL from formant-frequency data. The technique is illustrated using a third developmental study of formant frequencies. The VTLs of the speakers are estimated and used to provide a more accurate description of the complicated relationship between VTL and glottal pulse rate as children mature into adults.

摘要

本文研究了根据元音共振峰频率估计声道长度(VTL)的理论基础。一方面,开发了一个统计推断模型来描述元音类型与VTL之间的关系,另一方面,描述共振峰频率与声腔大小之间的关系。该模型应用于两项著名的共振峰频率发育研究。结果表明,VTL是继元音类型之后变异性的主要来源,并且相对于残余测量噪声,诸如口咽比例的发育变化等其他因素的贡献较小。结果表明,说话者在成长过程中会调整声道形状,以保持单个元音的特定共振峰频率模式。这种共振峰模式假说是开发从共振峰频率数据估计VTL的统计推断模型的动机。使用第三项共振峰频率发育研究来说明该技术。估计了说话者的VTL,并用于更准确地描述儿童成长为成年人过程中VTL与声门脉冲率之间的复杂关系。

相似文献

2
Vowel acoustic space development in children: a synthesis of acoustic and anatomic data.
J Speech Lang Hear Res. 2007 Dec;50(6):1510-45. doi: 10.1044/1092-4388(2007/104).
4
A model of acoustic interspeaker variability based on the concept of formant-cavity affiliation.
J Acoust Soc Am. 2004 Jan;115(1):337-51. doi: 10.1121/1.1631946.
5
Frequency measurement of vowel formants produced by Brazilian children aged between 4 and 8 years.
J Voice. 2015 May;29(3):292-8. doi: 10.1016/j.jvoice.2014.08.001. Epub 2014 Dec 12.
7
Evidence for early specialized processing of speech formant information in anterior and posterior human auditory cortex.
Eur J Neurosci. 2010 Aug;32(4):684-92. doi: 10.1111/j.1460-9568.2010.07315.x. Epub 2010 Jul 14.
8
Formant characteristics of vowels produced by Mandarin esophageal speakers.
J Voice. 2009 Mar;23(2):255-60. doi: 10.1016/j.jvoice.2007.09.002. Epub 2007 Dec 21.
9
Relation of vocal tract shape, formant transitions, and stop consonant identification.
J Speech Lang Hear Res. 2010 Dec;53(6):1514-28. doi: 10.1044/1092-4388(2010/09-0127). Epub 2010 Jul 19.
10
Vocal tract dimensional characteristics of professional male and female singers with different types of singing voices.
Int J Speech Lang Pathol. 2013 Oct;15(5):484-91. doi: 10.3109/17549507.2012.744429. Epub 2013 Feb 7.

引用本文的文献

1
A practical guide to calculating vocal tract length and scale-invariant formant patterns.
Behav Res Methods. 2024 Sep;56(6):5588-5604. doi: 10.3758/s13428-023-02288-x. Epub 2023 Dec 29.
2
LANGUAGE EXPOSURE PREDICTS CHILDREN'S PHONETIC PATTERNING: EVIDENCE FROM LANGUAGE SHIFT.
Language (Baltim). 2022 Sep;98(3):461-509. doi: 10.1353/lan.0.0269.
3
Segmental and suprasegmental encoding of speaker confidence in Wuxi dialect vowels.
Front Psychol. 2022 Dec 12;13:1028106. doi: 10.3389/fpsyg.2022.1028106. eCollection 2022.
4
Effect of Channel Interaction on Vocal Cue Perception in Cochlear Implant Users.
Trends Hear. 2021 Jan-Dec;25:23312165211030166. doi: 10.1177/23312165211030166.
5
Static measurements of vowel formant frequencies and bandwidths: A review.
J Commun Disord. 2018 Jul-Aug;74:74-97. doi: 10.1016/j.jcomdis.2018.05.004. Epub 2018 Jun 1.
6
Discrimination of Voice Pitch and Vocal-Tract Length in Cochlear Implant Users.
Ear Hear. 2018 Mar/Apr;39(2):226-237. doi: 10.1097/AUD.0000000000000480.
7
On Short-Time Estimation of Vocal Tract Length from Formant Frequencies.
PLoS One. 2015 Jul 15;10(7):e0132193. doi: 10.1371/journal.pone.0132193. eCollection 2015.
8
Developmental acoustic study of American English diphthongs.
J Acoust Soc Am. 2014 Oct;136(4):1880-94. doi: 10.1121/1.4894799.
9
Location and acoustic scale cues in concurrent speech recognition.
J Acoust Soc Am. 2010 Jun;127(6):3729-37. doi: 10.1121/1.3377051.
10
How the human brain recognizes speech in the context of changing speakers.
J Neurosci. 2010 Jan 13;30(2):629-38. doi: 10.1523/JNEUROSCI.2742-09.2010.

本文引用的文献

2
A comparison of vowel normalization procedures for language variation research.
J Acoust Soc Am. 2004 Nov;116(5):3099-107. doi: 10.1121/1.1795335.
3
Formants of children, women, and men: the effects of vocal intensity variation.
J Acoust Soc Am. 1999 Sep;106(3 Pt 1):1532-42. doi: 10.1121/1.427150.
4
Morphology and development of the human vocal tract: a study using magnetic resonance imaging.
J Acoust Soc Am. 1999 Sep;106(3 Pt 1):1511-22. doi: 10.1121/1.427148.
5
Missing-data model of vowel identification.
J Acoust Soc Am. 1999 Jun;105(6):3497-508. doi: 10.1121/1.424675.
6
Acoustics of children's speech: developmental changes of temporal and spectral parameters.
J Acoust Soc Am. 1999 Mar;105(3):1455-68. doi: 10.1121/1.426686.
7
A unifying review of linear gaussian models.
Neural Comput. 1999 Feb 15;11(2):305-45. doi: 10.1162/089976699300016674.
8
Acoustic characteristics of American English vowels.
J Acoust Soc Am. 1995 May;97(5 Pt 1):3099-111. doi: 10.1121/1.411872.
10
Auditory-perceptual interpretation of the vowel.
J Acoust Soc Am. 1989 May;85(5):2114-34. doi: 10.1121/1.397862.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验