Suppr超能文献

ModLink+:利用蛋白质-蛋白质相互作用改进折叠识别

ModLink+: improving fold recognition by using protein-protein interactions.

作者信息

Fornes Oriol, Aragues Ramon, Espadaler Jordi, Marti-Renom Marc A, Sali Andrej, Oliva Baldo

机构信息

Structural Bioinformatics Lab (GRIB-IMIM), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Catalonia, Spain.

出版信息

Bioinformatics. 2009 Jun 15;25(12):1506-12. doi: 10.1093/bioinformatics/btp238. Epub 2009 Apr 8.

Abstract

MOTIVATION

Several strategies have been developed to predict the fold of a target protein sequence, most of which are based on aligning the target sequence to other sequences of known structure. Previously, we demonstrated that the consideration of protein-protein interactions significantly increases the accuracy of fold assignment compared with PSI-BLAST sequence comparisons. A drawback of our method was the low number of proteins to which a fold could be assigned. Here, we present an improved version of the method that addresses this limitation. We also compare our method to other state-of-the-art fold assignment methodologies.

RESULTS

Our approach (ModLink+) has been tested on 3716 proteins with domain folds classified in the Structural Classification Of Proteins (SCOP) as well as known interacting partners in the Database of Interacting Proteins (DIP). For this test set, the ratio of success [positive predictive value (PPV)] on fold assignment increases from 75% for PSI-BLAST, 83% for HHSearch and 81% for PRC to >90% for ModLink+at the e-value cutoff of 10(-3). Under this e-value, ModLink+can assign a fold to 30-45% of the proteins in the test set, while our previous method could cover <25%. When applied to 6384 proteins with unknown fold in the yeast proteome, ModLink+combined with PSI-BLAST assigns a fold for domains in 3738 proteins, while PSI-BLAST alone covers only 2122 proteins, HHSearch 2969 and PRC 2826 proteins, using a threshold e-value that would represent a PPV >82% for each method in the test set.

AVAILABILITY

The ModLink+server is freely accessible in the World Wide Web at http://sbi.imim.es/modlink/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

已经开发了多种策略来预测目标蛋白质序列的折叠结构,其中大多数基于将目标序列与其他已知结构的序列进行比对。此前,我们证明,与PSI-BLAST序列比对相比,考虑蛋白质-蛋白质相互作用可显著提高折叠结构分配的准确性。我们方法的一个缺点是能够分配折叠结构的蛋白质数量较少。在此,我们提出了该方法的一个改进版本,以解决这一局限性。我们还将我们的方法与其他最新的折叠结构分配方法进行了比较。

结果

我们的方法(ModLink+)已在3716个蛋白质上进行了测试,这些蛋白质的结构域折叠在蛋白质结构分类数据库(SCOP)中进行了分类,并且在相互作用蛋白质数据库(DIP)中有已知的相互作用伙伴。对于这个测试集,在e值截止为10^(-3)时,折叠结构分配的成功率[阳性预测值(PPV)]从PSI-BLAST的75%、HHSearch的83%和PRC的81%提高到ModLink+的>90%。在此e值下,ModLink+可以为测试集中30%-45%的蛋白质分配折叠结构,而我们之前的方法只能覆盖<25%。当应用于酵母蛋白质组中6384个折叠结构未知的蛋白质时,ModLink+与PSI-BLAST相结合为3738个蛋白质中的结构域分配了折叠结构,而仅PSI-BLAST只能覆盖2122个蛋白质,HHSearch为2969个,PRC为2826个蛋白质,使用的阈值e值代表测试集中每种方法的PPV>82%。

可用性

ModLink+服务器可通过万维网免费访问,网址为http://sbi.imim.es/modlink/。

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
ModLink+: improving fold recognition by using protein-protein interactions.
Bioinformatics. 2009 Jun 15;25(12):1506-12. doi: 10.1093/bioinformatics/btp238. Epub 2009 Apr 8.
2
DescFold: a web server for protein fold recognition.
BMC Bioinformatics. 2009 Dec 14;10:416. doi: 10.1186/1471-2105-10-416.
3
Improving protein fold recognition with hybrid profiles combining sequence and structure evolution.
Bioinformatics. 2015 Dec 1;31(23):3782-9. doi: 10.1093/bioinformatics/btv462. Epub 2015 Aug 7.
5
AutoSCOP: automated prediction of SCOP classifications using unique pattern-class mappings.
Bioinformatics. 2007 May 15;23(10):1203-10. doi: 10.1093/bioinformatics/btm089. Epub 2007 Mar 22.
7
DeepSF: deep convolutional neural network for mapping protein sequences to folds.
Bioinformatics. 2018 Apr 15;34(8):1295-1303. doi: 10.1093/bioinformatics/btx780.
8
SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
BMC Bioinformatics. 2007 May 22;8 Suppl 4(Suppl 4):S2. doi: 10.1186/1471-2105-8-S4-S2.
9
Detecting remotely related proteins by their interactions and sequence similarity.
Proc Natl Acad Sci U S A. 2005 May 17;102(20):7151-6. doi: 10.1073/pnas.0500831102. Epub 2005 May 9.
10
Exploring the sequence-structure protein landscape in the glycosyltransferase family.
Protein Sci. 2003 Oct;12(10):2291-302. doi: 10.1110/ps.03131303.

引用本文的文献

1
Structural and functional analysis of a novel psychrophilic β-mannanase from Glaciozyma antarctica PI12.
J Comput Aided Mol Des. 2014 Jun;28(6):685-98. doi: 10.1007/s10822-014-9751-1. Epub 2014 May 22.
5
Biana: a software framework for compiling biological interactions and analyzing networks.
BMC Bioinformatics. 2010 Jan 27;11:56. doi: 10.1186/1471-2105-11-56.

本文引用的文献

1
PDBalert: automatic, recurrent remote homology tracking and protein structure prediction.
BMC Struct Biol. 2008 Nov 25;8:51. doi: 10.1186/1472-6807-8-51.
2
Profile Comparer: a program for scoring and aligning profile hidden Markov models.
Bioinformatics. 2008 Nov 15;24(22):2630-1. doi: 10.1093/bioinformatics/btn504. Epub 2008 Oct 9.
3
The Universal Protein Resource (UniProt) 2009.
Nucleic Acids Res. 2009 Jan;37(Database issue):D169-74. doi: 10.1093/nar/gkn664. Epub 2008 Oct 4.
4
A protein domain-based interactome network for C. elegans early embryogenesis.
Cell. 2008 Aug 8;134(3):534-45. doi: 10.1016/j.cell.2008.07.009.
5
Prediction of enzyme function by combining sequence similarity and protein interactions.
BMC Bioinformatics. 2008 May 27;9:249. doi: 10.1186/1471-2105-9-249.
6
Macromolecular modeling with rosetta.
Annu Rev Biochem. 2008;77:363-82. doi: 10.1146/annurev.biochem.77.062906.171838.
7
Principles of protein-protein interactions: what are the preferred ways for proteins to interact?
Chem Rev. 2008 Apr;108(4):1225-44. doi: 10.1021/cr040409x. Epub 2008 Mar 21.
8
Analyzing protein interaction networks using structural information.
Annu Rev Biochem. 2008;77:415-41. doi: 10.1146/annurev.biochem.77.062706.133317.
10
The Pfam protein families database.
Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8. doi: 10.1093/nar/gkm960. Epub 2007 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验