Algebra and Geometry Department, Mathematics Faculty, Universitat de Barcelona, Spain.
Protein Sci. 2011 Mar;20(3):529-41. doi: 10.1002/pro.585.
Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions for selecting rigid-body docking poses. These potentials include the energetic component that provides the residues with a particular secondary structure and surface accessibility. These scoring functions have been tested on a state-of-art benchmark dataset and on a decoy dataset of permanent interactions. Our results were compared with a residue-pair potential scoring function (RPScore) and an atomic-detailed scoring function (Zrank). We have combined knowledge-based potentials to score protein-protein poses of decoys of complexes classified either as transient or as permanent protein-protein interactions. Being defined from residue-pair statistical potentials and not requiring of an atomic level description, our method surpassed Zrank for scoring rigid-docking decoys where the unbound partners of an interaction have to endure conformational changes upon binding. However, when only moderate conformational changes are required (in rigid docking) or when the right conformational changes are ensured (in flexible docking), Zrank is the most successful scoring function. Finally, our study suggests that the physicochemical properties necessary for the binding are allocated on the proteins previous to its binding and with independence of the partner. This information is encoded at the residue level and could be easily incorporated in the initial grid scoring for Fast Fourier Transform rigid-body docking methods.
开发有效的方法来筛选通过刚体蛋白质对接获得的二元相互作用对于复合物的结构预测和阐明蛋白质-蛋白质结合的物理化学原理至关重要。我们已经推导出了用于选择刚体对接构象的基于经验的知识的势能函数。这些势能包括提供特定二级结构和表面可及性的残基的能量分量。这些评分函数已在最先进的基准数据集和永久相互作用的诱饵数据集上进行了测试。我们的结果与残基对势评分函数 (RPScore) 和原子详细评分函数 (Zrank) 进行了比较。我们已经结合了基于知识的势能来评分复合物诱饵的蛋白质-蛋白质构象,这些诱饵被分类为瞬态或永久的蛋白质-蛋白质相互作用。由于我们的方法是从残基对统计势能定义的,而不需要原子水平的描述,因此在评分刚性对接诱饵时,它优于 Zrank,在这种情况下,相互作用的未结合伴侣在结合时必须忍受构象变化。然而,当仅需要适度的构象变化(在刚性对接中)或确保正确的构象变化(在柔性对接中)时,Zrank 是最成功的评分函数。最后,我们的研究表明,结合所必需的物理化学性质在结合之前就分配在蛋白质上,并且与伴侣无关。这些信息编码在残基水平上,可以很容易地包含在快速傅里叶变换刚体对接方法的初始网格评分中。