Kelly Jane X, Smilkstein Martin J, Brun Reto, Wittlin Sergio, Cooper Roland A, Lane Kristin D, Janowsky Aaron, Johnson Robert A, Dodean Rozalia A, Winter Rolf, Hinrichs David J, Riscoe Michael K
Portland Veterans Affairs Medical Centre, Portland, Oregon 97239, USA.
Nature. 2009 May 14;459(7244):270-3. doi: 10.1038/nature07937. Epub 2009 Apr 8.
Preventing and delaying the emergence of drug resistance is an essential goal of antimalarial drug development. Monotherapy and highly mutable drug targets have each facilitated resistance, and both are undesirable in effective long-term strategies against multi-drug-resistant malaria. Haem remains an immutable and vulnerable target, because it is not parasite-encoded and its detoxification during haemoglobin degradation, critical to parasite survival, can be subverted by drug-haem interaction as in the case of quinolines and many other drugs. Here we describe a new antimalarial chemotype that combines the haem-targeting character of acridones, together with a chemosensitizing component that counteracts resistance to quinoline antimalarial drugs. Beyond the essential intrinsic characteristics common to deserving candidate antimalarials (high potency in vitro against pan-sensitive and multi-drug-resistant Plasmodium falciparum, efficacy and safety in vivo after oral administration, inexpensive synthesis and favourable physicochemical properties), our initial lead, T3.5 (3-chloro-6-(2-diethylamino-ethoxy)-10-(2-diethylamino-ethyl)-acridone), demonstrates unique synergistic properties. In addition to 'verapamil-like' chemosensitization to chloroquine and amodiaquine against quinoline-resistant parasites, T3.5 also results in an apparently mechanistically distinct synergism with quinine and with piperaquine. This synergy, evident in both quinoline-sensitive and quinoline-resistant parasites, has been demonstrated both in vitro and in vivo. In summary, this innovative acridone design merges intrinsic potency and resistance-counteracting functions in one molecule, and represents a new strategy to expand, enhance and sustain effective antimalarial drug combinations.
预防和延缓耐药性的出现是抗疟药物研发的一个重要目标。单一疗法和高度可变的药物靶点都促成了耐药性的产生,而这两者在针对耐多药疟疾的有效长期策略中都是不可取的。血红素仍然是一个不变且易受攻击的靶点,因为它不是由寄生虫编码的,并且在血红蛋白降解过程中对寄生虫生存至关重要的血红素解毒过程,会像喹啉和许多其他药物那样,因药物 - 血红素相互作用而被破坏。在此,我们描述了一种新的抗疟化学类型,它结合了吖啶酮靶向血红素的特性以及一种化学增敏成分,该成分可对抗对喹啉类抗疟药物的耐药性。除了值得关注的候选抗疟药物所共有的基本内在特性(在体外对泛敏感和耐多药恶性疟原虫具有高效能、口服给药后在体内具有疗效和安全性、合成成本低廉且具有良好的物理化学性质)之外,我们最初的先导化合物T3.5(3 - 氯 - 6 -(2 - 二乙氨基 - 乙氧基)- 10 -(2 - 二乙氨基 - 乙基)- 吖啶酮)展现出独特的协同特性。除了对氯喹和阿莫地喹对喹啉耐药寄生虫具有“维拉帕米样”化学增敏作用外,T3.5还与奎宁和哌喹产生了一种明显在机制上不同的协同作用。这种协同作用在喹啉敏感和喹啉耐药的寄生虫中均很明显,已在体外和体内得到证实。总之,这种创新的吖啶酮设计在一个分子中融合了内在效能和抗耐药功能,代表了一种扩展、增强和维持有效抗疟药物组合的新策略。