Suppr超能文献

迁地保护种子寿命的生态关联:对195个物种的比较研究

Ecological correlates of ex situ seed longevity: a comparative study on 195 species.

作者信息

Probert Robin J, Daws Matthew I, Hay Fiona R

机构信息

Seed Conservation Department, Royal Botanic Gardens Kew, Ardingly, West Sussex, UK.

出版信息

Ann Bot. 2009 Jul;104(1):57-69. doi: 10.1093/aob/mcp082. Epub 2009 Apr 9.

Abstract

BACKGROUND AND AIMS

Extended seed longevity in the dry state is the basis for the ex situ conservation of 'orthodox' seeds. However, even under identical storage conditions there is wide variation in seed life-span between species. Here, the effects of seed traits and environmental conditions at the site of collection on seed longevity is explored for195 wild species from 71 families from environments ranging from cold deserts to tropical forests.

METHODS

Seeds were rapidly aged at elevated temperature and relative humidity (either 45 degrees C and 60% RH or 60 degrees C and 60% RH) and regularly sampled for germination. The time taken in storage for viability to fall to 50% (p(50)) was determined using Probit analysis and used as a measure of relative seed longevity between species.

KEY RESULTS

Across species, p(50) at 45 degrees C and 60% RH varied from 0.1 d to 771 d. Endospermic seeds were, in general, shorter lived than non-endospermic seeds and seeds from hot, dry environments were longer lived than those from cool, wet conditions. These relationships remained significant when controlling for the effects of phylogenetic relatedness using phylogenetically independent contrasts. Seed mass and oil content were not correlated with p(50).

CONCLUSIONS

The data suggest that the endospermic seeds of early angiosperms which evolved in forest understorey habitats are short-lived. Extended longevity presumably evolved as a response to climatic change or the invasion of drier areas. The apparent short-lived nature of endospermic seeds from cool wet environments may have implications for re-collection and re-testing strategies in ex situ conservation.

摘要

背景与目的

干燥状态下种子较长的寿命是“正统”种子迁地保护的基础。然而,即使在相同的储存条件下,不同物种的种子寿命仍存在很大差异。本文针对来自71个科的195种野生植物种子,研究了种子特性和采集地环境条件对种子寿命的影响,这些植物分布于从寒冷沙漠到热带森林的各种环境中。

方法

将种子在高温高湿条件下(45℃、相对湿度60%或60℃、相对湿度60%)快速老化,并定期取样检测发芽率。采用概率分析确定种子活力降至50%(p(50))所需的储存时间,并以此作为衡量不同物种间相对种子寿命的指标。

主要结果

在所有物种中,45℃、相对湿度60%条件下的p(50)从0.1天到771天不等。一般来说,有胚乳种子的寿命比无胚乳种子短,来自炎热干燥环境的种子比来自凉爽湿润环境的种子寿命长。在使用系统发育独立对比法控制系统发育相关性的影响后,这些关系仍然显著。种子质量和含油量与p(50)无关。

结论

数据表明,早期在森林林下栖息地进化的被子植物的有胚乳种子寿命较短。种子寿命的延长可能是对气候变化或干旱地区入侵的一种响应。凉爽湿润环境中有胚乳种子明显较短的寿命可能对迁地保护中的重新采集和重新测试策略有影响。

相似文献

1
Ecological correlates of ex situ seed longevity: a comparative study on 195 species.
Ann Bot. 2009 Jul;104(1):57-69. doi: 10.1093/aob/mcp082. Epub 2009 Apr 9.
2
Seeds of alpine plants are short lived: implications for long-term conservation.
Ann Bot. 2011 Jan;107(1):171-9. doi: 10.1093/aob/mcq222. Epub 2010 Nov 16.
3
Effect of water content and temperature on seed longevity of seven Brassicaceae species after 5 years of storage.
Plant Biol (Stuttg). 2015 Jan;17(1):153-62. doi: 10.1111/plb.12183. Epub 2014 May 7.
4
Orchid seeds are not always short lived in a conventional seed bank!
Ann Bot. 2024 May 13;133(7):941-952. doi: 10.1093/aob/mcae021.
5
Seed life span and food security.
New Phytol. 2019 Oct;224(2):557-562. doi: 10.1111/nph.16006. Epub 2019 Jul 5.
6
Dormancy and endosperm presence influence the conservation potential in central European calcareous grassland plants.
AoB Plants. 2019 Jun 25;11(4):plz035. doi: 10.1093/aobpla/plz035. eCollection 2019 Aug.
7
The influence of cone age on the relative longevity of Banksia seeds.
Ann Bot. 2011 Feb;107(2):303-9. doi: 10.1093/aob/mcq236. Epub 2010 Nov 30.
8
Environmentally induced transgenerational changes in seed longevity: maternal and genetic influence.
Ann Bot. 2014 Jun;113(7):1257-63. doi: 10.1093/aob/mcu046. Epub 2014 Mar 27.
10
A Seed Storage Protocol to Determine Longevity.
Methods Mol Biol. 2024;2830:63-69. doi: 10.1007/978-1-0716-3965-8_6.

引用本文的文献

2
Desiccation tolerant yet short-lived seeds: A conundrum for post-harvest handling of a high restoration value bunchgrass?
PLoS One. 2025 Jun 20;20(6):e0326596. doi: 10.1371/journal.pone.0326596. eCollection 2025.
3
Unraveling the Mechanistic Basis for Control of Seed Longevity.
Plants (Basel). 2025 Mar 5;14(5):805. doi: 10.3390/plants14050805.
4
Optimizing the accession-level quantity of seeds to put into storage to minimize seed (gene)bank regeneration or re-collection.
Conserv Physiol. 2025 Feb 23;13(1):coaf011. doi: 10.1093/conphys/coaf011. eCollection 2025.
8
Endosperm Persistence in Results in Seed Coat Fractures and Loss of Seed Longevity.
Plants (Basel). 2023 Jul 22;12(14):2726. doi: 10.3390/plants12142726.
9
Seed Storage Physiology of and , Two Threatened Myrtaceae Genera Endemic to New Zealand.
Plants (Basel). 2023 Feb 27;12(5):1067. doi: 10.3390/plants12051067.
10
Seed Longevity-The Evolution of Knowledge and a Conceptual Framework.
Plants (Basel). 2023 Jan 19;12(3):471. doi: 10.3390/plants12030471.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验