Abney Mark
Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
Bioinformatics. 2009 Jun 15;25(12):1561-3. doi: 10.1093/bioinformatics/btp185. Epub 2009 Apr 9.
Computing the probability of identity by descent sharing among n genes given only the pedigree of those genes is a computationally challenging problem, if n or the pedigree size is large. Here, I present a novel graphical algorithm for efficiently computing all generalized kinship coefficients for n genes. The graphical description transforms the problem from doing many recursion on the pedigree to doing a single traversal of a structure referred to as the kinship graph.
The algorithm is implemented for n = 4 in the software package IdCoefs at http://home.uchicago.edu/abney/Software.html.
Supplementary data are available at Bioinformatics online.
仅根据基因的系谱计算n个基因之间通过血缘共享的同一性概率,若n或系谱规模较大,则是一个计算上具有挑战性的问题。在此,我提出一种新颖的图形算法,用于高效计算n个基因的所有广义亲属系数。这种图形描述将问题从在系谱上进行多次递归转换为对一种称为亲属关系图的结构进行单次遍历。
该算法已在http://home.uchicago.edu/abney/Software.html的软件包IdCoefs中针对n = 4实现。
补充数据可在《生物信息学》在线获取。