Hitomi Kenichi, DiTacchio Luciano, Arvai Andrew S, Yamamoto Junpei, Kim Sang-Tae, Todo Takeshi, Tainer John A, Iwai Shigenori, Panda Satchidananda, Getzoff Elizabeth D
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):6962-7. doi: 10.1073/pnas.0809180106. Epub 2009 Apr 9.
Homologous flavoproteins from the photolyase (PHR)/cryptochrome (CRY) family use the FAD cofactor in PHRs to catalyze DNA repair and in CRYs to tune the circadian clock and control development. To help address how PHR/CRY members achieve these diverse functions, we determined the crystallographic structure of Arabidopsis thaliana (6-4) PHR (UVR3), which is strikingly (>65%) similar in sequence to human circadian clock CRYs. The structure reveals a substrate-binding cavity specific for the UV-induced DNA lesion, (6-4) photoproduct, and cofactor binding sites different from those of bacterial PHRs and consistent with distinct mechanisms for activities and regulation. Mutational analyses were combined with this prototypic structure for the (6-4) PHR/clock CRY cluster to identify structural and functional motifs: phosphate-binding and Pro-Lys-Leu protrusion motifs constricting access to the substrate-binding cavity above FAD, sulfur loop near the external end of the Trp electron-transfer pathway, and previously undefined C-terminal helix. Our results provide a detailed, unified framework for investigations of (6-4) PHRs and the mammalian CRYs. Conservation of key residues and motifs controlling FAD access and activities suggests that regulation of FAD redox properties and radical stability is essential not only for (6-4) photoproduct DNA repair, but also for circadian clock-regulating CRY functions. The structural and functional results reported here elucidate archetypal relationships within this flavoprotein family and suggest how PHRs and CRYs use local residue and cofactor tuning, rather than larger structural modifications, to achieve their diverse functions encompassing DNA repair, plant growth and development, and circadian clock regulation.
来自光裂合酶(PHR)/隐花色素(CRY)家族的同源黄素蛋白利用PHR中的FAD辅因子催化DNA修复,利用CRY中的FAD辅因子调节生物钟并控制发育。为了帮助阐明PHR/CRY成员如何实现这些不同功能,我们确定了拟南芥(6-4)光裂合酶(UVR3)的晶体结构,其序列与人生物钟CRY的序列惊人地相似(>65%)。该结构揭示了一个对紫外线诱导的DNA损伤(6-4)光产物具有特异性的底物结合腔,以及与细菌PHR不同的辅因子结合位点,这与不同的活性和调节机制一致。突变分析与该(6-4)PHR/生物钟CRY簇的原型结构相结合,以识别结构和功能基序:磷酸结合和脯氨酸-赖氨酸-亮氨酸突出基序限制了FAD上方底物结合腔的入口,色氨酸电子传递途径外端附近的硫环,以及以前未定义的C端螺旋。我们的结果为研究(6-4)光裂合酶和哺乳动物CRY提供了一个详细、统一的框架。控制FAD进入和活性的关键残基和基序的保守性表明,FAD氧化还原特性和自由基稳定性的调节不仅对(6-4)光产物DNA修复至关重要,而且对调节生物钟的CRY功能也至关重要。本文报道的结构和功能结果阐明了该黄素蛋白家族内的原型关系,并表明PHR和CRY如何利用局部残基和辅因子调节,而非更大的结构修饰,来实现其包括DNA修复、植物生长发育和生物钟调节在内的多种功能。