Suppr超能文献

米托蒽醌生物合成途径的关键酶——拜耳-维利格单加氧酶MtmOIV的晶体结构

Crystal structure of Baeyer-Villiger monooxygenase MtmOIV, the key enzyme of the mithramycin biosynthetic pathway .

作者信息

Beam Miranda P, Bosserman Mary A, Noinaj Nicholas, Wehenkel Marie, Rohr Jürgen

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, and Kentucky Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA.

出版信息

Biochemistry. 2009 Jun 2;48(21):4476-87. doi: 10.1021/bi8023509.

Abstract

Baeyer-Villiger monooxygenases (BVMOs), mostly flavoproteins, were shown to be powerful biocatalysts for synthetic organic chemistry applications and were also suggested to play key roles for the biosyntheses of various natural products. Here we present the three-dimensional structure of MtmOIV, a 56 kDa homodimeric FAD- and NADPH-dependent monooxygenase, which catalyzes the key frame-modifying step of the mithramycin biosynthetic pathway and currently the only BVMO proven to react with its natural substrate via a Baeyer-Villiger reaction. MtmOIV's structure was determined by X-ray crystallography using molecular replacement to a resolution of 2.9 A. MtmOIV cleaves a C-C bond, essential for the conversion of the biologically inactive precursor, premithramycin B, into the active drug mithramycin. The MtmOIV structure combined with substrate docking calculations and site-directed mutagenesis experiments identifies several residues that participate in cofactor and substrate binding. Future experimentation aimed at broadening the substrate specificity of the enzyme could facilitate the generation of chemically diverse mithramycin analogues through combinatorial biosynthesis.

摘要

拜耳-维利格单加氧酶(BVMOs)大多为黄素蛋白,已被证明是用于合成有机化学应用的强大生物催化剂,也被认为在各种天然产物的生物合成中起关键作用。在此,我们展示了MtmOIV的三维结构,它是一种56 kDa的同二聚体FAD和NADPH依赖性单加氧酶,催化光神霉素生物合成途径中的关键骨架修饰步骤,并且是目前唯一被证明通过拜耳-维利格反应与其天然底物发生反应的BVMO。MtmOIV的结构通过分子置换法的X射线晶体学确定,分辨率为2.9 Å。MtmOIV裂解一个碳-碳键,这对于将无生物活性的前体光神霉素B转化为活性药物光神霉素至关重要。MtmOIV的结构与底物对接计算和定点诱变实验相结合,确定了几个参与辅因子和底物结合的残基。旨在拓宽该酶底物特异性的未来实验,可通过组合生物合成促进生成化学性质多样的光神霉素类似物。

相似文献

4
Crystallization and X-ray diffraction properties of Baeyer-Villiger monooxygenase MtmOIV from the mithramycin biosynthetic pathway in Streptomyces argillaceus.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005 Nov 1;61(Pt 11):1023-6. doi: 10.1107/S1744309105033221. Epub 2005 Oct 28.
7
Crystal structure of a Baeyer-Villiger monooxygenase.
Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13157-62. doi: 10.1073/pnas.0404538101. Epub 2004 Aug 24.
8
Switch in Cofactor Specificity of a Baeyer-Villiger Monooxygenase.
Chembiochem. 2016 Dec 14;17(24):2312-2315. doi: 10.1002/cbic.201600484. Epub 2016 Nov 9.
9
The Structure of the Antibiotic Deactivating, N-hydroxylating Rifampicin Monooxygenase.
J Biol Chem. 2016 Oct 7;291(41):21553-21562. doi: 10.1074/jbc.M116.745315. Epub 2016 Aug 24.
10
Structural basis for the selective addition of an oxygen atom to cyclic ketones by Baeyer-Villiger monooxygenase from Parvibaculum lavamentivorans.
Biochem Biophys Res Commun. 2019 May 7;512(3):564-570. doi: 10.1016/j.bbrc.2019.03.114. Epub 2019 Mar 23.

引用本文的文献

1
Genome Mining and Genetic Manipulation Reveal New Isofuranonaphthoquinones in Species.
Int J Mol Sci. 2024 Aug 14;25(16):8847. doi: 10.3390/ijms25168847.
2
A flavin-monooxygenase catalyzing oxepinone formation and the complete biosynthesis of vibralactone.
Nat Commun. 2023 Jun 10;14(1):3436. doi: 10.1038/s41467-023-39108-x.
3
Genome-based analysis of the type II PKS biosynthesis pathway of xanthones in and their antifungal activity.
RSC Adv. 2019 Nov 15;9(64):37376-37383. doi: 10.1039/c9ra07345k. eCollection 2019 Nov 13.
4
Deciphering Chemical Mediators Regulating Specialized Metabolism in a Symbiotic Cyanobacterium.
Angew Chem Int Ed Engl. 2022 Jun 27;61(26):e202204545. doi: 10.1002/anie.202204545. Epub 2022 May 9.
5
Structure-Activity Relationships of Pyrazolo[1,5-]pyrimidin-7(4)-ones as Antitubercular Agents.
ACS Infect Dis. 2021 Feb 12;7(2):479-492. doi: 10.1021/acsinfecdis.0c00851. Epub 2021 Jan 6.
6
Discovery of a Cryptic Intermediate in Late Steps of Mithramycin Biosynthesis.
Angew Chem Int Ed Engl. 2020 Jan 7;59(2):826-832. doi: 10.1002/anie.201910241. Epub 2019 Nov 27.
7
How mithramycin stereochemistry dictates its structure and DNA binding function.
Medchemcomm. 2019 Mar 28;10(5):735-741. doi: 10.1039/c9md00100j. eCollection 2019 May 1.
8
Enzymatic Cascade Reactions in Biosynthesis.
Angew Chem Int Ed Engl. 2019 May 20;58(21):6846-6879. doi: 10.1002/anie.201807844. Epub 2019 Feb 20.
9
Biosynthesis of Rishirilide B.
Antibiotics (Basel). 2018 Mar 7;7(1):20. doi: 10.3390/antibiotics7010020.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
The FAD cofactor of RebC shifts to an IN conformation upon flavin reduction.
Biochemistry. 2008 Dec 23;47(51):13506-13. doi: 10.1021/bi801229w.
5
Kinetic mechanism of phenylacetone monooxygenase from Thermobifida fusca.
Biochemistry. 2008 Apr 1;47(13):4082-93. doi: 10.1021/bi702296k. Epub 2008 Mar 6.
7
Mithramycin analogues generated by combinatorial biosynthesis show improved bioactivity.
J Nat Prod. 2008 Feb;71(2):199-207. doi: 10.1021/np0705763. Epub 2008 Jan 15.
8
NCS-constrained exhaustive search using oligomeric models.
Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):90-8. doi: 10.1107/S0907444907053802. Epub 2007 Dec 5.
9
Crystallographic trapping in the rebeccamycin biosynthetic enzyme RebC.
Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15311-6. doi: 10.1073/pnas.0707190104. Epub 2007 Sep 14.
10
Inference of macromolecular assemblies from crystalline state.
J Mol Biol. 2007 Sep 21;372(3):774-97. doi: 10.1016/j.jmb.2007.05.022. Epub 2007 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验