Beam Miranda P, Bosserman Mary A, Noinaj Nicholas, Wehenkel Marie, Rohr Jürgen
Department of Pharmaceutical Sciences, College of Pharmacy, and Kentucky Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, USA.
Biochemistry. 2009 Jun 2;48(21):4476-87. doi: 10.1021/bi8023509.
Baeyer-Villiger monooxygenases (BVMOs), mostly flavoproteins, were shown to be powerful biocatalysts for synthetic organic chemistry applications and were also suggested to play key roles for the biosyntheses of various natural products. Here we present the three-dimensional structure of MtmOIV, a 56 kDa homodimeric FAD- and NADPH-dependent monooxygenase, which catalyzes the key frame-modifying step of the mithramycin biosynthetic pathway and currently the only BVMO proven to react with its natural substrate via a Baeyer-Villiger reaction. MtmOIV's structure was determined by X-ray crystallography using molecular replacement to a resolution of 2.9 A. MtmOIV cleaves a C-C bond, essential for the conversion of the biologically inactive precursor, premithramycin B, into the active drug mithramycin. The MtmOIV structure combined with substrate docking calculations and site-directed mutagenesis experiments identifies several residues that participate in cofactor and substrate binding. Future experimentation aimed at broadening the substrate specificity of the enzyme could facilitate the generation of chemically diverse mithramycin analogues through combinatorial biosynthesis.
拜耳-维利格单加氧酶(BVMOs)大多为黄素蛋白,已被证明是用于合成有机化学应用的强大生物催化剂,也被认为在各种天然产物的生物合成中起关键作用。在此,我们展示了MtmOIV的三维结构,它是一种56 kDa的同二聚体FAD和NADPH依赖性单加氧酶,催化光神霉素生物合成途径中的关键骨架修饰步骤,并且是目前唯一被证明通过拜耳-维利格反应与其天然底物发生反应的BVMO。MtmOIV的结构通过分子置换法的X射线晶体学确定,分辨率为2.9 Å。MtmOIV裂解一个碳-碳键,这对于将无生物活性的前体光神霉素B转化为活性药物光神霉素至关重要。MtmOIV的结构与底物对接计算和定点诱变实验相结合,确定了几个参与辅因子和底物结合的残基。旨在拓宽该酶底物特异性的未来实验,可通过组合生物合成促进生成化学性质多样的光神霉素类似物。