Suppr超能文献

一种拜耳-维利格单加氧酶的晶体结构。

Crystal structure of a Baeyer-Villiger monooxygenase.

作者信息

Malito Enrico, Alfieri Andrea, Fraaije Marco W, Mattevi Andrea

机构信息

Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.

出版信息

Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13157-62. doi: 10.1073/pnas.0404538101. Epub 2004 Aug 24.

Abstract

Flavin-containing Baeyer-Villiger monooxygenases employ NADPH and molecular oxygen to catalyze the insertion of an oxygen atom into a carbon-carbon bond of a carbonylic substrate. These enzymes can potentially be exploited in a variety of biocatalytic applications given the wide use of Baeyer-Villiger reactions in synthetic organic chemistry. The catalytic activity of these enzymes involves the formation of two crucial intermediates: a flavin peroxide generated by the reaction of the reduced flavin with molecular oxygen and the "Criegee" intermediate resulting from the attack of the flavin peroxide onto the substrate that is being oxygenated. The crystal structure of phenylacetone monooxygenase, a Baeyer-Villiger monooxygenase from the thermophilic bacterium Thermobifida fusca, exhibits a two-domain architecture resembling that of the disulfide oxidoreductases. The active site is located in a cleft at the domain interface. An arginine residue lays above the flavin ring in a position suited to stabilize the negatively charged flavin-peroxide and Criegee intermediates. This amino acid residue is predicted to exist in two positions; the "IN" position found in the crystal structure and an "OUT" position that allows NADPH to approach the flavin to reduce the cofactor. Domain rotations are proposed to bring about the conformational changes involved in catalysis. The structural studies highlight the functional complexity of this class of flavoenzymes, which coordinate the binding of three substrates (molecular oxygen, NADPH, and phenylacetone) in proximity of the flavin cofactor with formation of two distinct catalytic intermediates.

摘要

含黄素的拜耳-维利格单加氧酶利用NADPH和分子氧催化将一个氧原子插入羰基底物的碳-碳键中。鉴于拜耳-维利格反应在合成有机化学中的广泛应用,这些酶有可能被用于各种生物催化应用中。这些酶的催化活性涉及形成两个关键中间体:由还原型黄素与分子氧反应生成的黄素过氧化物,以及黄素过氧化物攻击被氧化的底物产生的“克里奇”中间体。来自嗜热细菌嗜热栖热放线菌的拜耳-维利格单加氧酶苯丙酮单加氧酶的晶体结构呈现出类似于二硫键氧化还原酶的两结构域架构。活性位点位于结构域界面的一个裂隙中。一个精氨酸残基位于黄素环上方,处于适合稳定带负电荷的黄素过氧化物和克里奇中间体的位置。该氨基酸残基预计存在于两个位置;晶体结构中发现的“IN”位置和允许NADPH接近黄素以还原辅因子的“OUT”位置。有人提出结构域旋转会引起催化过程中涉及的构象变化。结构研究突出了这类黄素酶的功能复杂性,它们在黄素辅因子附近协调三种底物(分子氧、NADPH和苯丙酮)的结合,并形成两种不同的催化中间体。

相似文献

1
Crystal structure of a Baeyer-Villiger monooxygenase.
Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13157-62. doi: 10.1073/pnas.0404538101. Epub 2004 Aug 24.
2
Snapshots of enzymatic Baeyer-Villiger catalysis: oxygen activation and intermediate stabilization.
J Biol Chem. 2011 Aug 19;286(33):29284-29291. doi: 10.1074/jbc.M111.255075. Epub 2011 Jun 22.
3
Kinetic mechanism of phenylacetone monooxygenase from Thermobifida fusca.
Biochemistry. 2008 Apr 1;47(13):4082-93. doi: 10.1021/bi702296k. Epub 2008 Mar 6.
4
Exploring the structural basis of substrate preferences in Baeyer-Villiger monooxygenases: insight from steroid monooxygenase.
J Biol Chem. 2012 Jun 29;287(27):22626-34. doi: 10.1074/jbc.M112.372177. Epub 2012 May 17.
5
Mapping the substrate binding site of phenylacetone monooxygenase from Thermobifida fusca by mutational analysis.
Appl Environ Microbiol. 2011 Aug 15;77(16):5730-8. doi: 10.1128/AEM.00687-11. Epub 2011 Jul 1.
6
Investigating the coenzyme specificity of phenylacetone monooxygenase from Thermobifida fusca.
Appl Microbiol Biotechnol. 2010 Nov;88(5):1135-43. doi: 10.1007/s00253-010-2769-y. Epub 2010 Aug 12.
7
The substrate-bound crystal structure of a Baeyer-Villiger monooxygenase exhibits a Criegee-like conformation.
J Am Chem Soc. 2012 May 9;134(18):7788-95. doi: 10.1021/ja211876p. Epub 2012 Apr 27.
10
Discovery of a thermostable Baeyer-Villiger monooxygenase by genome mining.
Appl Microbiol Biotechnol. 2005 Jan;66(4):393-400. doi: 10.1007/s00253-004-1749-5. Epub 2004 Oct 27.

引用本文的文献

3
Biosensor-Guided Engineering of a Baeyer-Villiger Monooxygenase for Aliphatic Ester Production.
Chembiochem. 2025 Jan 2;26(1):e202400712. doi: 10.1002/cbic.202400712. Epub 2024 Nov 6.
4
A bird's-eye view: exploration of the flavin-containing monooxygenase superfamily in common wheat.
Front Plant Sci. 2024 Apr 12;15:1369299. doi: 10.3389/fpls.2024.1369299. eCollection 2024.
7
Structural basis of regioselective tryptophan dibromination by the single-component flavin-dependent halogenase AetF.
Acta Crystallogr D Struct Biol. 2023 Jul 1;79(Pt 7):596-609. doi: 10.1107/S2059798323004254. Epub 2023 Jun 14.
8
A Cold-Active Flavin-Dependent Monooxygenase from Unlocks Applications of Baeyer-Villiger Monooxygenases at Low Temperature.
ACS Catal. 2023 Feb 27;13(6):3549-3562. doi: 10.1021/acscatal.2c05160. eCollection 2023 Mar 17.
9
Bioinformatic Mining and Structure-Activity Profiling of Baeyer-Villiger Monooxygenases from Mycobacterium tuberculosis.
mSphere. 2022 Apr 27;7(2):e0048221. doi: 10.1128/msphere.00482-21. Epub 2022 Mar 17.
10
The Unexplored Importance of Fleeting Chiral Intermediates in Enzyme-Catalyzed Reactions.
J Am Chem Soc. 2021 Sep 22;143(37):14939-14950. doi: 10.1021/jacs.1c04551. Epub 2021 Sep 7.

本文引用的文献

1
Raster3D: photorealistic molecular graphics.
Methods Enzymol. 1997;277:505-24. doi: 10.1016/s0076-6879(97)77028-9.
2
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.
3
Identifying determinants of NADPH specificity in Baeyer-Villiger monooxygenases.
Eur J Biochem. 2004 Jun;271(11):2107-16. doi: 10.1111/j.1432-1033.2004.04126.x.
4
The prodrug activator EtaA from Mycobacterium tuberculosis is a Baeyer-Villiger monooxygenase.
J Biol Chem. 2004 Jan 30;279(5):3354-60. doi: 10.1074/jbc.M307770200. Epub 2003 Nov 10.
5
Critical role of histidine residues in cyclohexanone monooxygenase expression, cofactor binding and catalysis.
Chem Biol Interact. 2003 Oct 25;146(2):157-64. doi: 10.1016/s0009-2797(03)00105-4.
6
Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0.
Acta Crystallogr D Biol Crystallogr. 2003 Nov;59(Pt 11):2023-30. doi: 10.1107/s0907444903017694. Epub 2003 Oct 23.
7
Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases.
Trends Biotechnol. 2003 Jul;21(7):318-23. doi: 10.1016/S0167-7799(03)00144-6.
9
Substructure solution with SHELXD.
Acta Crystallogr D Biol Crystallogr. 2002 Oct;58(Pt 10 Pt 2):1772-9. doi: 10.1107/s0907444902011678. Epub 2002 Sep 28.
10
The Protein Data Bank.
Acta Crystallogr D Biol Crystallogr. 2002 Jun;58(Pt 6 No 1):899-907. doi: 10.1107/s0907444902003451. Epub 2002 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验