Suppr超能文献

预先定殖的人源共生大肠杆菌菌株可在链霉素处理的小鼠肠道中对大肠杆菌O157:H7的生长起到屏障作用。

Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine.

作者信息

Leatham Mary P, Banerjee Swati, Autieri Steven M, Mercado-Lubo Regino, Conway Tyrrell, Cohen Paul S

机构信息

Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 02881, USA.

出版信息

Infect Immun. 2009 Jul;77(7):2876-86. doi: 10.1128/IAI.00059-09. Epub 2009 Apr 13.

Abstract

Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the streptomycin-treated mouse intestine (Fabich et al., Infect. Immun. 76:1143-1152, 2008). Here, mice were precolonized with any of three human commensal strains (E. coli MG1655, E. coli HS, or E. coli Nissle 1917) and 10 days later were fed 10(5) CFU of the same strains. While each precolonized strain nearly eliminated its isogenic strain, confirming that colonization resistance can be modeled in mice, each allowed growth of the other commensal strains to higher numbers, consistent with different commensal E. coli strains using different nutrients in the intestine. Mice were also precolonized with any of five commensal E. coli strains for 10 days and then were fed 10(5) CFU of E. coli EDL933, an O157:H7 pathogen. E. coli Nissle 1917 and E. coli EFC1 limited growth of E. coli EDL933 in the intestine (10(3) to 10(4) CFU/gram of feces), whereas E. coli MG1655, E. coli HS, and E. coli EFC2 allowed growth to higher numbers (10(6) to 10(7) CFU/gram of feces). Importantly, when E. coli EDL933 was fed to mice previously co-colonized with three E. coli strains (MG1655, HS, and Nissle 1917), it was eliminated from the intestine (<10 CFU/gram of feces). These results confirm that commensal E. coli strains can provide a barrier to infection and suggest that it may be possible to construct E. coli probiotic strains that prevent growth of pathogenic E. coli strains in the intestine.

摘要

不同的大肠杆菌菌株通常在体外对糖类的代谢生长能力相同,但在经链霉素处理的小鼠肠道中,它们似乎利用不同的糖类(Fabich等人,《感染与免疫》76:1143 - 1152,2008年)。在此,用三种人体共生菌株(大肠杆菌MG1655、大肠杆菌HS或大肠杆菌Nissle 1917)中的任何一种对小鼠进行预定植,10天后给它们喂食相同菌株的10⁵CFU。虽然每种预定植菌株几乎都消除了其同基因菌株,证实了在小鼠中可以模拟定植抗性,但每种菌株都允许其他共生菌株生长到更高数量,这与不同的共生大肠杆菌菌株在肠道中利用不同营养物质一致。还用五种共生大肠杆菌菌株中的任何一种对小鼠进行预定植10天,然后给它们喂食10⁵CFU的大肠杆菌EDL933(一种O157:H7病原体)。大肠杆菌Nissle 1917和大肠杆菌EFC1限制了大肠杆菌EDL933在肠道中的生长(每克粪便10³至10⁴CFU),而大肠杆菌MG1655、大肠杆菌HS和大肠杆菌EFC2则允许其生长到更高数量(每克粪便10⁶至10⁷CFU)。重要的是,当将大肠杆菌EDL933喂给先前已被三种大肠杆菌菌株(MG1655、HS和Nissle 1917)共同定植的小鼠时,它从肠道中被清除(每克粪便<10 CFU)。这些结果证实共生大肠杆菌菌株可以提供感染屏障,并表明有可能构建能防止致病性大肠杆菌菌株在肠道中生长的大肠杆菌益生菌菌株。

相似文献

5
Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine.
Infect Immun. 2008 Mar;76(3):1143-52. doi: 10.1128/IAI.01386-07. Epub 2008 Jan 7.
6
Escherichia coli pathotypes occupy distinct niches in the mouse intestine.
Infect Immun. 2014 May;82(5):1931-8. doi: 10.1128/IAI.01435-13. Epub 2014 Feb 24.

引用本文的文献

1
Probiotic acoustic biosensors for noninvasive imaging of gut inflammation.
Nat Commun. 2025 Aug 25;16(1):7931. doi: 10.1038/s41467-025-62569-1.
2
High-risk clonal groups of avian pathogenic (APEC) demonstrate heterogeneous phenotypic characteristics and .
Virulence. 2025 Dec;16(1):2546682. doi: 10.1080/21505594.2025.2546682. Epub 2025 Aug 13.
4
Enterohemorrhagic E. coli (EHEC) and the microbiome.
PLoS Pathog. 2025 Jun 12;21(6):e1013224. doi: 10.1371/journal.ppat.1013224. eCollection 2025 Jun.
5
The gut microbiome: an emerging epicenter of antimicrobial resistance?
Front Microbiol. 2025 May 20;16:1593065. doi: 10.3389/fmicb.2025.1593065. eCollection 2025.
6
Interplay between chemotaxis, quorum sensing, and metabolism regulates Escherichia coli-Salmonella Typhimurium interactions in vivo.
PLoS Pathog. 2025 May 2;21(5):e1013156. doi: 10.1371/journal.ppat.1013156. eCollection 2025 May.
7
Leveraging strain competition to address antimicrobial resistance with microbiota therapies.
Gut Microbes. 2025 Dec;17(1):2488046. doi: 10.1080/19490976.2025.2488046. Epub 2025 Apr 7.
8
Real Way to Target Gram-Negative Pathogens: Discovery of a Novel Antibiotic Class.
J Med Chem. 2025 May 22;68(10):10128-10138. doi: 10.1021/acs.jmedchem.5c00112. Epub 2025 Mar 31.
9
AcrAB Efflux Pump Plays a Crucial Role in Bile Salts Resistance and Pathogenesis of .
Antibiotics (Basel). 2024 Nov 29;13(12):1146. doi: 10.3390/antibiotics13121146.
10
Microbiome and Mucosal Immunity in the Intestinal Tract.
In Vivo. 2025 Jan-Feb;39(1):17-24. doi: 10.21873/invivo.13801.

本文引用的文献

1
The Life of Commensal Escherichia coli in the Mammalian Intestine.
EcoSal Plus. 2004 Dec;1(1). doi: 10.1128/ecosalplus.8.3.1.2.
2
Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases.
Cell Host Microbe. 2008 Jun 12;3(6):417-27. doi: 10.1016/j.chom.2008.05.001.
3
Dissecting the genetic components of adaptation of Escherichia coli to the mouse gut.
PLoS Genet. 2008 Jan;4(1):e2. doi: 10.1371/journal.pgen.0040002. Epub 2007 Nov 27.
4
Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine.
Infect Immun. 2008 Mar;76(3):1143-52. doi: 10.1128/IAI.01386-07. Epub 2008 Jan 7.
7
Role of motility and the flhDC Operon in Escherichia coli MG1655 colonization of the mouse intestine.
Infect Immun. 2007 Jul;75(7):3315-24. doi: 10.1128/IAI.00052-07. Epub 2007 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验