Aguet François, Geissbühler Stefan, Märki Iwan, Lasser Theo, Unser Michael
Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne, Switzerland.
Opt Express. 2009 Apr 13;17(8):6829-48. doi: 10.1364/oe.17.006829.
Fluorophores that are fixed during image acquisition produce a diffraction pattern that is characteristic of the orientation of the fluorophore's underlying dipole. Fluorescence localization microscopy techniques such as PALM and STORM achieve super-resolution by applying Gaussian-based fitting algorithms to in-focus images of individual fluorophores; when applied to fixed dipoles, this can lead to a bias in the range of 5-20 nm.We introduce a method for the joint estimation of position and orientation of dipoles, based on the representation of a physically realistic image formation model as a 3-D steerable filter. Our approach relies on a single, defocused acquisition. We establish theoretical, localization-based resolution limits on estimation accuracy using Cramér-Rao bounds, and experimentally show that estimation accuracies of at least 5 nm for position and of at least 2 degrees for orientation can be achieved. Patterns generated by applying the image formation model to estimated position/orientation pairs closely match experimental observations.
在图像采集过程中固定的荧光团会产生一种衍射图案,该图案是荧光团潜在偶极子方向的特征。诸如PALM和STORM等荧光定位显微镜技术通过将基于高斯的拟合算法应用于单个荧光团的聚焦图像来实现超分辨率;当应用于固定偶极子时,这可能导致5 - 20纳米范围内的偏差。我们基于将物理现实的图像形成模型表示为三维可控滤波器,引入了一种用于联合估计偶极子位置和方向的方法。我们的方法依赖于单次离焦采集。我们使用克拉美 - 罗界建立了基于定位的估计精度的理论分辨率极限,并通过实验表明,位置估计精度至少可达5纳米,方向估计精度至少可达2度。将图像形成模型应用于估计的位置/方向对所生成的图案与实验观察结果紧密匹配。