Reinert R R
International Scientific & Clinical Affairs, Vaccines, Wyeth Pharmaceuticals, La Défense, Paris, France.
Clin Microbiol Infect. 2009 Apr;15 Suppl 3:7-11. doi: 10.1111/j.1469-0691.2009.02724.x.
Antibacterial resistance in pneumococci is increasing worldwide, primarily against beta-lactams and macrolides. Understanding the role played by molecular determinants of resistance, transformation and competence in the evolution of Streptococcus pneumoniae is important in addressing this trend. Data from the Prospective Resistant Organism Tracking and Epidemiology for the Ketolide Telithromycin (PROTEKT) study indicate that about 40% of pneumococci display multidrug-resistant phenotypes (resistance to three or more antibiotics), with highly variable prevalence rates observed in different countries. Alterations in the structure of six penicillin-binding proteins (PBPs) have been described in S. pneumoniae (1a, 1b, 2x, 2a, 2b and 3), enabling resistance to beta-lactam antibiotics. Mechanisms conferring macrolide resistance include resistance mediated through the erm(B) gene, which results in macrolide-lincosamide-streptogramin B resistance, or through the mef(A) gene, which encodes an antibiotic efflux pump. Another variant, mef(E), is also expressed in S. pneumoniae; both mef(A) and mef(E) variants are associated with strains belonging to serotype 14. In addition to the selection pressure resulting from misuse of antibiotics, widespread vaccination programmes may contribute to changing pneumococcal epidemiology. Since the introduction of the seven-valent pneumococcal conjugate vaccine (PCV7), the rate of invasive pneumococcal disease due to PCV7 serotypes has declined significantly in many countries, but some countries have reported an increase in non-PCV7 serotypes. This phenomenon, termed 'replacement', is associated with certain pneumococcal serotypes or clones (e.g. serotype 19A). Whether novel 'vaccine escape recombinant' pneumococcal strains are emerging or changes in distribution are part of a secular cycle remains to be determined.
肺炎球菌的抗菌耐药性在全球范围内不断增加,主要是对β-内酰胺类和大环内酯类抗生素的耐药性。了解耐药性、转化和感受态的分子决定因素在肺炎链球菌进化中所起的作用,对于应对这一趋势至关重要。来自酮内酯类药物泰利霉素的前瞻性耐药生物体追踪与流行病学研究(PROTEKT)的数据表明,约40%的肺炎球菌表现出多重耐药表型(对三种或更多种抗生素耐药),不同国家的流行率差异很大。肺炎链球菌中已描述了六种青霉素结合蛋白(PBPs)(1a、1b、2x、2a、2b和3)结构的改变,从而使其对β-内酰胺类抗生素产生耐药性。赋予大环内酯类耐药性的机制包括通过erm(B)基因介导的耐药性,这会导致对大环内酯-林可酰胺-链阳菌素B耐药,或通过mef(A)基因介导的耐药性,该基因编码一种抗生素外排泵。另一个变体mef(E)也在肺炎链球菌中表达;mef(A)和mef(E)变体均与14型血清型菌株有关。除了抗生素滥用导致的选择压力外,广泛的疫苗接种计划可能也有助于改变肺炎球菌的流行病学。自七价肺炎球菌结合疫苗(PCV7)推出以来,许多国家由PCV7血清型引起的侵袭性肺炎球菌疾病发病率显著下降,但一些国家报告非PCV7血清型有所增加。这种现象被称为“替代”,与某些肺炎球菌血清型或克隆(如19A血清型)有关。新型“疫苗逃逸重组”肺炎球菌菌株是否正在出现,或者分布变化是否是一个长期循环的一部分,仍有待确定。