Suppr超能文献

用于信息偏倚编码和评估的因果图。

Causal diagrams for encoding and evaluation of information bias.

作者信息

Shahar Eyal

机构信息

Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ 85724, USA.

出版信息

J Eval Clin Pract. 2009 Jun;15(3):436-40. doi: 10.1111/j.1365-2753.2008.01031.x. Epub 2009 Apr 2.

Abstract

BACKGROUND

Epidemiologists and clinical researchers usually classify bias into three main categories: confounding, selection bias and information bias. Previous authors have described the first two categories in the logic and notation of causal diagrams, formally known as directed acyclic graphs (DAG).

METHODS

I examine common types of information bias--disease-related and exposure-related--from the perspective of causal diagrams.

RESULTS

Disease or exposure information bias always involves the use of an effect of the variable of interest - specifically, an effect of true disease status or an effect of true exposure status. The bias typically arises from a causal or an associational path of no interest to the researchers. In certain situations, it may be possible to prevent or remove some of the bias.

CONCLUSIONS

Common types of information bias, just like confounding and selection bias, have a clear and helpful representation within the framework of causal diagrams.

摘要

背景

流行病学家和临床研究人员通常将偏倚分为三大类:混杂偏倚、选择偏倚和信息偏倚。先前的作者已用因果图的逻辑和表示法描述了前两类偏倚,因果图正式名称为有向无环图(DAG)。

方法

我从因果图的角度研究信息偏倚的常见类型——与疾病相关的和与暴露相关的。

结果

疾病或暴露信息偏倚总是涉及使用感兴趣变量的一个效应——具体而言,真实疾病状态的一个效应或真实暴露状态的一个效应。该偏倚通常源于研究人员不感兴趣的一条因果路径或关联路径。在某些情况下,有可能预防或消除部分偏倚。

结论

信息偏倚的常见类型,与混杂偏倚和选择偏倚一样,在因果图框架内有清晰且有用的表示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验