Suppr超能文献

PhnP的结构,一种用于膦酸盐降解的碳-磷裂解酶途径的磷酸二酯酶。

Structure of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway for phosphonate degradation.

作者信息

Podzelinska Kateryna, He Shu-Mei, Wathier Matthew, Yakunin Alexander, Proudfoot Michael, Hove-Jensen Bjarne, Zechel David L, Jia Zongchao

机构信息

From the Departments of Biochemistry, Kingston, Ontario K7L 3N6, Canada.

Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.

出版信息

J Biol Chem. 2009 Jun 19;284(25):17216-17226. doi: 10.1074/jbc.M808392200. Epub 2009 Apr 14.

Abstract

Carbon-phosphorus lyase is a multienzyme system encoded by the phn operon that enables bacteria to metabolize organophosphonates when the preferred nutrient, inorganic phosphate, is scarce. One of the enzymes encoded by this operon, PhnP, is predicted by sequence homology to be a metal-dependent hydrolase of the beta-lactamase superfamily. Screening with a wide array of hydrolytically sensitive substrates indicated that PhnP is an enzyme with phosphodiesterase activity, having the greatest specificity toward bis(p-nitrophenyl)phosphate and 2',3'-cyclic nucleotides. No activity was observed toward RNA. The metal ion dependence of PhnP with bis(p-nitrophenyl)phosphate as substrate revealed a distinct preference for Mn(2+) and Ni(2+) for catalysis, whereas Zn(2+) afforded poor activity. The three-dimensional structure of PhnP was solved by x-ray crystallography to 1.4 resolution. The overall fold of PhnP is very similar to that of the tRNase Z endonucleases but lacks the long exosite module used by these enzymes to bind their tRNA substrates. The active site of PhnP contains what are probably two Mn(2+) ions surrounded by an array of active site residues that are identical to those observed in the tRNase Z enzymes. A second, remote Zn(2+) binding site is also observed, composed of a set of cysteine and histidine residues that are strictly conserved in the PhnP family. This second metal ion site appears to stabilize a structural motif.

摘要

碳-磷裂解酶是一种由phn操纵子编码的多酶系统,当首选营养素无机磷酸盐稀缺时,它能使细菌代谢有机膦酸盐。该操纵子编码的一种酶PhnP,通过序列同源性预测为β-内酰胺酶超家族的金属依赖性水解酶。用多种水解敏感底物进行筛选表明,PhnP是一种具有磷酸二酯酶活性的酶,对双(对硝基苯基)磷酸酯和2',3'-环核苷酸具有最高的特异性。未观察到对RNA的活性。以双(对硝基苯基)磷酸酯为底物时,PhnP对金属离子的依赖性显示出对Mn(2+)和Ni(2+)催化的明显偏好,而Zn(2+)的活性较差。通过X射线晶体学解析了PhnP的三维结构,分辨率为1.4。PhnP的整体折叠与tRNase Z核酸内切酶非常相似,但缺少这些酶用于结合其tRNA底物的长外部位点模块。PhnP的活性位点包含可能被一系列活性位点残基包围的两个Mn(2+)离子,这些残基与在tRNase Z酶中观察到的相同。还观察到第二个远程Zn(2+)结合位点,由一组在PhnP家族中严格保守的半胱氨酸和组氨酸残基组成。这个第二个金属离子位点似乎稳定了一个结构基序。

相似文献

1
Structure of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway for phosphonate degradation.
J Biol Chem. 2009 Jun 19;284(25):17216-17226. doi: 10.1074/jbc.M808392200. Epub 2009 Apr 14.
2
Structure and mechanism of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway.
Biochemistry. 2011 Oct 11;50(40):8603-15. doi: 10.1021/bi2005398. Epub 2011 Sep 15.
4
An unusual diphosphatase from the PhnP family cleaves reactive FAD photoproducts.
Biochem J. 2018 Jan 11;475(1):261-272. doi: 10.1042/BCJ20170817.
6
Carbon-Phosphorus Lyase-the State of the Art.
Appl Biochem Biotechnol. 2020 Apr;190(4):1525-1552. doi: 10.1007/s12010-019-03161-4. Epub 2019 Dec 2.
7
Phosphate-independent expression of the carbon-phosphorus lyase activity of Escherichia coli.
Appl Microbiol Biotechnol. 1998 May;49(5):573-8. doi: 10.1007/s002530051215.
8
Structural and functional characterization of a novel phosphodiesterase from Methanococcus jannaschii.
J Biol Chem. 2004 Jul 23;279(30):31854-62. doi: 10.1074/jbc.M401059200. Epub 2004 May 5.
10
Crystal structure of the catalytic fragment of human brain 2',3'-cyclic-nucleotide 3'-phosphodiesterase.
J Mol Biol. 2005 Feb 25;346(3):789-800. doi: 10.1016/j.jmb.2004.12.024. Epub 2005 Jan 12.

引用本文的文献

1
Genome-wide comparative analysis of clinical and environmental strains of the opportunistic pathogen ().
Front Microbiol. 2024 Nov 6;15:1483110. doi: 10.3389/fmicb.2024.1483110. eCollection 2024.
2
Microbial synthesis of pyrroloquinoline quinone.
World J Microbiol Biotechnol. 2023 Dec 7;40(1):31. doi: 10.1007/s11274-023-03833-8.
3
The Microbial Degradation of Natural and Anthropogenic Phosphonates.
Molecules. 2023 Sep 29;28(19):6863. doi: 10.3390/molecules28196863.
4
Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.
Chem Rev. 2021 Jul 14;121(13):7957-8094. doi: 10.1021/acs.chemrev.1c00138. Epub 2021 Jun 15.
5
Expression and purification of the 5'-nucleotidase YitU from Bacillus species: its enzymatic properties and possible applications in biotechnology.
Appl Microbiol Biotechnol. 2020 Apr;104(7):2957-2972. doi: 10.1007/s00253-020-10428-y. Epub 2020 Feb 10.
6
The Prodigal Compound: Return of Ribosyl 1,5-Bisphosphate as an Important Player in Metabolism.
Microbiol Mol Biol Rev. 2018 Dec 19;83(1). doi: 10.1128/MMBR.00040-18. Print 2019 Mar.
7
Metatranscriptomics analysis of cyanobacterial aggregates during cyanobacterial bloom period in Lake Taihu, China.
Environ Sci Pollut Res Int. 2018 Feb;25(5):4811-4825. doi: 10.1007/s11356-017-0733-4. Epub 2017 Dec 3.
8
Crystal structures reveal metal-binding plasticity at the metallo-β-lactamase active site of PqqB from Pseudomonas putida.
J Biol Inorg Chem. 2017 Oct;22(7):1089-1097. doi: 10.1007/s00775-017-1486-8. Epub 2017 Aug 19.
9
Self-resistance in Streptomyces, with Special Reference to β-Lactam Antibiotics.
Molecules. 2016 May 10;21(5):605. doi: 10.3390/molecules21050605.
10
Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.
Microbiol Mol Biol Rev. 2014 Mar;78(1):176-97. doi: 10.1128/MMBR.00040-13.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Metal content of metallo-beta-lactamase L1 is determined by the bioavailability of metal ions.
Biochemistry. 2008 Jul 29;47(30):7947-53. doi: 10.1021/bi8004768. Epub 2008 Jul 3.
3
Expression, purification and preliminary diffraction studies of PhnP.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Jun 1;64(Pt 6):554-7. doi: 10.1107/S1744309108014656. Epub 2008 May 24.
4
Two archaeal tRNase Z enzymes: similar but different.
Arch Microbiol. 2008 Sep;190(3):301-8. doi: 10.1007/s00203-008-0368-4. Epub 2008 Apr 25.
5
Metal requirements and phosphodiesterase activity of tRNase Z enzymes.
Biochemistry. 2007 Dec 25;46(51):14742-50. doi: 10.1021/bi7010459. Epub 2007 Dec 4.
6
Crystal structure of PhnH: an essential component of carbon-phosphorus lyase in Escherichia coli.
J Bacteriol. 2008 Feb;190(3):1072-83. doi: 10.1128/JB.01274-07. Epub 2007 Nov 9.
7
Clustal W and Clustal X version 2.0.
Bioinformatics. 2007 Nov 1;23(21):2947-8. doi: 10.1093/bioinformatics/btm404. Epub 2007 Sep 10.
10
Structural basis for the role of Asp-120 in metallo-beta-lactamases.
Biochemistry. 2007 Sep 18;46(37):10664-74. doi: 10.1021/bi700707u. Epub 2007 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验