Bearer Elaine L, Lowengrub John S, Frieboes Hermann B, Chuang Yao-Li, Jin Fang, Wise Steven M, Ferrari Mauro, Agus David B, Cristini Vittorio
Department of Pathology and Laboratory Medicine, and Division of Engineering, Brown University, Providence, RI, USA.
Cancer Res. 2009 May 15;69(10):4493-501. doi: 10.1158/0008-5472.CAN-08-3834. Epub 2009 Apr 14.
Clinical outcome prognostication in oncology is a guiding principle in therapeutic choice. A wealth of qualitative empirical evidence links disease progression with tumor morphology, histopathology, invasion, and associated molecular phenomena. However, the quantitative contribution of each of the known parameters in this progression remains elusive. Mathematical modeling can provide the capability to quantify the connection between variables governing growth, prognosis, and treatment outcome. By quantifying the link between the tumor boundary morphology and the invasive phenotype, this work provides a quantitative tool for the study of tumor progression and diagnostic/prognostic applications. This establishes a framework for monitoring system perturbation towards development of therapeutic strategies and correlation to clinical outcome for prognosis.
肿瘤学中的临床结果预后是治疗选择的指导原则。大量定性实证证据将疾病进展与肿瘤形态、组织病理学、侵袭及相关分子现象联系起来。然而,在这一进展过程中,每个已知参数的定量贡献仍不明确。数学建模能够量化控制生长、预后和治疗结果的变量之间的联系。通过量化肿瘤边界形态与侵袭表型之间的联系,这项工作为肿瘤进展研究以及诊断/预后应用提供了一种定量工具。这为监测系统扰动以制定治疗策略以及与临床结果进行关联以进行预后建立了一个框架。