Suppr超能文献

血管化肿瘤计算机模型的形态稳定性。

Morphological Stability for in silico Models of Avascular Tumors.

机构信息

Division of Scientific Computing, Department of Information Technology, Uppsala University, 751 05, Uppsala, Sweden.

出版信息

Bull Math Biol. 2024 May 17;86(7):75. doi: 10.1007/s11538-024-01297-x.

Abstract

The landscape of computational modeling in cancer systems biology is diverse, offering a spectrum of models and frameworks, each with its own trade-offs and advantages. Ideally, models are meant to be useful in refining hypotheses, to sharpen experimental procedures and, in the longer run, even for applications in personalized medicine. One of the greatest challenges is to balance model realism and detail with experimental data to eventually produce useful data-driven models. We contribute to this quest by developing a transparent, highly parsimonious, first principle in silico model of a growing avascular tumor. We initially formulate the physiological considerations and the specific model within a stochastic cell-based framework. We next formulate a corresponding mean-field model using partial differential equations which is amenable to mathematical analysis. Despite a few notable differences between the two models, we are in this way able to successfully detail the impact of all parameters in the stability of the growth process and on the eventual tumor fate of the stochastic model. This facilitates the deduction of Bayesian priors for a given situation, but also provides important insights into the underlying mechanism of tumor growth and progression. Although the resulting model framework is relatively simple and transparent, it can still reproduce the full range of known emergent behavior. We identify a novel model instability arising from nutrient starvation and we also discuss additional insight concerning possible model additions and the effects of those. Thanks to the framework's flexibility, such additions can be readily included whenever the relevant data become available.

摘要

癌症系统生物学中的计算建模领域多种多样,提供了一系列模型和框架,每种模型和框架都有其自身的权衡和优势。理想情况下,模型旨在完善假设,优化实验程序,并且从长远来看,甚至可以应用于个性化医疗。最大的挑战之一是平衡模型的现实性和细节与实验数据,以最终产生有用的基于数据的模型。我们通过开发一个不断增长的无血管肿瘤的透明、高度简约、基于第一原理的计算模型来为这一探索做出贡献。我们最初在随机基于细胞的框架内制定生理考虑因素和具体模型。接下来,我们使用偏微分方程来制定相应的均值场模型,该模型适合数学分析。尽管这两个模型之间存在一些明显的差异,但我们能够成功地详细描述所有参数对生长过程稳定性的影响以及随机模型的最终肿瘤命运。这有助于为给定情况推导出贝叶斯先验概率,也为肿瘤生长和进展的潜在机制提供了重要的见解。虽然所得到的模型框架相对简单和透明,但它仍然可以再现所有已知的突发行为。我们确定了一种新的模型不稳定性,这种不稳定性源于营养饥饿,并且我们还讨论了有关可能的模型添加以及这些添加的影响的其他见解。由于框架的灵活性,只要相关数据可用,就可以随时轻松地进行此类添加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/156d/11561027/ad4a3fd97d47/11538_2024_1297_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验