Feld Shara I, Woo Kaitlin M, Alexandridis Roxana, Wu Yirong, Liu Jie, Peissig Peggy, Onitilo Adedayo A, Cox Jennifer, Page C David, Burnside Elizabeth S
University of Wisconsin Department of Radiology, Madison, WI.
University of Wisconsin Department of Biostatistics and Medical Informatics, Madison, WI.
AMIA Annu Symp Proc. 2018 Dec 5;2018:1253-1262. eCollection 2018.
The predictive capability of combining demographic risk factors, germline genetic variants, and mammogram abnormality features for breast cancer risk prediction is poorly understood. We evaluated the predictive performance of combinations of demographic risk factors, high risk single nucleotide polymorphisms (SNPs), and mammography features for women recommended for breast biopsy in a retrospective case-control study (n = 768) with four logistic regression models. The AUC of the baseline demographic features model was 0.580. Both genetic variants and mammography abnormality features augmented the performance of the baseline model: demographics + SNP (AUC =0.668), demographics + mammography (AUC =0.702). Finally, we found that the demographics + SNP + mammography model (AUC = 0.753) had the greatest predictive power, with a significant performance improvement over the other models. The combination of demographic risk factors, genetic variants and imaging features improves breast cancer risk prediction over prior methods utilizing only a subset of these features.
对于将人口统计学风险因素、种系基因变异和乳房X光检查异常特征相结合以进行乳腺癌风险预测的预测能力,目前了解甚少。在一项回顾性病例对照研究(n = 768)中,我们使用四个逻辑回归模型,评估了人口统计学风险因素、高风险单核苷酸多态性(SNP)和乳房X光检查特征的组合对建议进行乳房活检的女性的预测性能。基线人口统计学特征模型的AUC为0.580。基因变异和乳房X光检查异常特征均增强了基线模型的性能:人口统计学+SNP(AUC = 0.668),人口统计学+乳房X光检查(AUC = 0.702)。最后,我们发现人口统计学+SNP+乳房X光检查模型(AUC = 0.753)具有最大的预测能力,与其他模型相比性能有显著提高。与仅使用这些特征的一个子集的先前方法相比,人口统计学风险因素、基因变异和影像特征的组合改善了乳腺癌风险预测。