Suppr超能文献

从真空环境中的视网膜到牛视紫红质及其突变体的光谱调谐机制:多参考从头算量子力学/分子力学研究

Mechanism of spectral tuning going from retinal in vacuo to bovine rhodopsin and its mutants: multireference ab initio quantum mechanics/molecular mechanics studies.

作者信息

Altun Ahmet, Yokoyama Shozo, Morokuma Keiji

机构信息

Cherry L. Emerson Center for Scientific Computation, Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.

出版信息

J Phys Chem B. 2008 Dec 25;112(51):16883-90. doi: 10.1021/jp807172h.

Abstract

We have investigated photoabsorption spectra of bovine rhodopsin and its mutants (E122Q and E113Q) by hybrid quantum mechanical/molecular mechanical (QM/MM) calculations as well as retinal in vacuo by pure QM calculations, employing multireference (MR) ab initio and TD-B3LYP methods. The sophisticated MR-SORCI+Q and MRCISD+Q methods extrapolated with respect to adopted approximations can reproduce the experimental absorption maxima of retinal very well. The relatively inexpensive MR-DDCI2+Q method gives absorption maxima blue-shifted by ca. 65 nm from experimental values; however, this error is systematic and thus MR-DDCI2+Q can be used to estimate spectral shifts. In MR calculations, the ground-state energy of retinal at B3LYP geometry is significantly lower than that at CASSCF geometry. Therefore, B3LYP geometry is more reliable than CASSCF geometry, which has a blue-shift error as large as 100 nm in the gas phase. The effect of ground-state geometry on the excitation energies is less critical in the polarizing field of protein environments. At the B3LYP geometry, there is no significant charge transfer upon vertical excitation to the S1 excited-state either from Glu1 13 to retinal or from Schiff-base terminal to beta-ionone ring through the polyene chain. All-trans to 11-cis isomerization of retinal in the gas phase has no influence on the calculated S1 absorbing state, in agreement with experiment. The shoulder of the experimental absorption spectrum of retinal in vacuo at the S1 absorbing band appears to be the second electronic transition (S2) in our calculations, contrary to previous tentative assignment to vibrational state of S1 or to the S1 band of a retinal isomer.

摘要

我们采用多参考(MR)从头算和TD - B3LYP方法,通过混合量子力学/分子力学(QM/MM)计算研究了牛视紫红质及其突变体(E122Q和E113Q)的光吸收光谱,以及通过纯QM计算研究了真空中的视黄醛。采用的近似方法外推的精密MR - SORCI + Q和MRCISD + Q方法能够很好地重现视黄醛的实验吸收最大值。相对廉价的MR - DDCI2 + Q方法给出的吸收最大值比实验值蓝移约65 nm;然而,这个误差是系统性的,因此MR - DDCI2 + Q可用于估计光谱位移。在MR计算中,视黄醛在B3LYP几何结构下的基态能量明显低于在CASSCF几何结构下的能量。因此,B3LYP几何结构比CASSCF几何结构更可靠,CASSCF几何结构在气相中有高达100 nm的蓝移误差。在蛋白质环境的极化场中,基态几何结构对激发能的影响不太关键。在B3LYP几何结构下,垂直激发到S1激发态时,无论是从Glu113到视黄醛,还是从席夫碱末端通过多烯链到β - 紫罗兰酮环,都没有明显的电荷转移。气相中视黄醛从全反式到11 - 顺式的异构化对计算的S1吸收态没有影响,这与实验结果一致。真空中视黄醛在S1吸收带的实验吸收光谱的肩峰在我们的计算中似乎是第二个电子跃迁(S2),这与之前将其初步归为S1的振动态或视黄醛异构体的S1带不同。

相似文献

3
Spectral tuning in visual pigments: an ONIOM(QM:MM) study on bovine rhodopsin and its mutants.
J Phys Chem B. 2008 Jun 5;112(22):6814-27. doi: 10.1021/jp709730b. Epub 2008 May 13.
5
The effect of protein environment on photoexcitation properties of retinal.
J Phys Chem B. 2012 Feb 23;116(7):2249-58. doi: 10.1021/jp205918m. Epub 2012 Feb 14.
7
pH-dependent absorption spectra of rhodopsin mutant E113Q: On the role of counterions and protein.
Spectrochim Acta A Mol Biomol Spectrosc. 2017 Mar 5;174:25-31. doi: 10.1016/j.saa.2016.11.015. Epub 2016 Nov 13.
8
Calculating absorption shifts for retinal proteins: computational challenges.
J Phys Chem B. 2005 Mar 3;109(8):3606-15. doi: 10.1021/jp0463060.
9
Building a model of the blue cone pigment based on the wild type rhodopsin structure with QM/MM methods.
J Phys Chem B. 2012 Mar 15;116(10):3313-21. doi: 10.1021/jp2086472. Epub 2012 Mar 6.
10
Photoactivation Intermediates of a G-Protein Coupled Receptor Rhodopsin Investigated by a Hybrid Molecular Simulation.
J Phys Chem B. 2017 Apr 20;121(15):3842-3852. doi: 10.1021/acs.jpcb.6b13050. Epub 2017 Feb 27.

引用本文的文献

1
Molecular mechanisms and evolutionary robustness of a color switch in proteorhodopsins.
Sci Adv. 2024 Jan 26;10(4):eadj0384. doi: 10.1126/sciadv.adj0384. Epub 2024 Jan 24.
2
Evolution of the Automatic Rhodopsin Modeling (ARM) Protocol.
Top Curr Chem (Cham). 2022 Mar 15;380(3):21. doi: 10.1007/s41061-022-00374-w.
3
Electronic Couplings and Electrostatic Interactions Behind the Light Absorption of Retinal Proteins.
Front Mol Biosci. 2021 Sep 15;8:752700. doi: 10.3389/fmolb.2021.752700. eCollection 2021.
4
Multiscale Molecular Modeling in G Protein-Coupled Receptor (GPCR)-Ligand Studies.
Biomolecules. 2020 Apr 19;10(4):631. doi: 10.3390/biom10040631.
5
Benchmarking the Performance of Time-Dependent Density Functional Theory Methods on Biochromophores.
J Chem Theory Comput. 2020 Jan 14;16(1):587-600. doi: 10.1021/acs.jctc.9b00823. Epub 2019 Dec 26.
6
Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins.
J Membr Biol. 2019 Oct;252(4-5):425-449. doi: 10.1007/s00232-019-00095-0. Epub 2019 Sep 30.
7
Adaptive Landscapes in the Age of Synthetic Biology.
Mol Biol Evol. 2019 May 1;36(5):890-907. doi: 10.1093/molbev/msz004.
8
Implications of short time scale dynamics on long time processes.
Struct Dyn. 2017 Dec 22;4(6):061507. doi: 10.1063/1.4996448. eCollection 2017 Nov.
10
Color Tuning in rhodopsins: the origin of the spectral shift between the chloride-bound and anion-free forms of halorhodopsin.
J Am Chem Soc. 2012 Mar 28;134(12):5520-3. doi: 10.1021/ja3009117. Epub 2012 Mar 16.

本文引用的文献

1
Theoretical Studies on the Color-Tuning Mechanism in Retinal Proteins.
J Chem Theory Comput. 2007 Mar;3(2):605-18. doi: 10.1021/ct6002687.
2
Combining Quantum Mechanics Methods with Molecular Mechanics Methods in ONIOM.
J Chem Theory Comput. 2006 May;2(3):815-26. doi: 10.1021/ct050289g.
3
Electronic structure and spectroscopy of "superoxidized" iron centers in model systems: theoretical and experimental trends.
Phys Chem Chem Phys. 2008 Aug 14;10(30):4361-74. doi: 10.1039/b801803k. Epub 2008 Jun 2.
5
Spectral tuning in visual pigments: an ONIOM(QM:MM) study on bovine rhodopsin and its mutants.
J Phys Chem B. 2008 Jun 5;112(22):6814-27. doi: 10.1021/jp709730b. Epub 2008 May 13.
6
Quantum mechanical/molecular mechanical studies on spectral tuning mechanisms of visual pigments and other photoactive proteins.
Photochem Photobiol. 2008 Jul-Aug;84(4):845-54. doi: 10.1111/j.1751-1097.2008.00308.x. Epub 2008 Mar 7.
7
An opsin shift in rhodopsin: retinal S0-S1 excitation in protein, in solution, and in the gas phase.
J Am Chem Soc. 2007 Oct 31;129(43):13035-42. doi: 10.1021/ja0732126. Epub 2007 Oct 9.
8
Origin of spectral tuning in rhodopsin--it is not the binding pocket.
Angew Chem Int Ed Engl. 2007;46(1-2):269-71. doi: 10.1002/anie.200603306.
9
The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution.
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17154-9. doi: 10.1073/pnas.0604048103. Epub 2006 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验