Berry John F, DeBeer George Serena, Neese Frank
University of Wisconsin, 1101 University Ave., Madison, WI 53706, USA.
Phys Chem Chem Phys. 2008 Aug 14;10(30):4361-74. doi: 10.1039/b801803k. Epub 2008 Jun 2.
Recent advances in synthetic chemistry have led to the discovery of "superoxidized" iron centers with valencies Fe(v) and Fe(vi) [K. Meyer et al., J. Am. Chem. Soc., 1999, 121, 4859-4876; J. F. Berry et al., Science, 2006, 312, 1937-1941; F. T. de Oliveira et al., Science, 2007, 315, 835-838.]. Furthermore, in recent years a number of high-valent Fe(iv) species have been found as reaction intermediates in metalloenzymes and have also been characterized in model systems [C. Krebs et al., Acc. Chem. Res., 2007, 40, 484-492; L. Que, Jr, Acc. Chem. Res., 2007, 40, 493-500.]. These species are almost invariably stabilized by a highly basic ligand X(n-) which is either O(2-) or N(3-). The differences in structure and bonding between oxo- and nitrido species as a function of oxidation state and their consequences on the observable spectroscopic properties have never been carefully assessed. Hence, fundamental differences between high-valent iron complexes having either Fe=O or Fe=N multiple bonds have been probed computationally in this work in a series of hypothetical trans-FeO(NH(3))(4)OH (1-3) and trans-FeN(NH(3))(4)OH (4-6) complexes. All computational properties are permeated by the intrinsically more covalent character of the Fe=N multiple bond as compared to the Fe=O bond. This difference is likely due to differences in Z* between N and O that allow for better orbital overlap to occur in the case of the Fe=N multiple bond. Spin-state energetics were addressed using elaborate multireference ab initio computations that show that all species 1-6 have an intrinsic preference for the low-spin state, except in the case of 1 in which S=1 and S=2 states are very close in energy. In addition to Mössbauer parameters, g-tensors, zero-field splitting and iron hyperfine couplings, X-ray absorption Fe K pre-edge spectra have been simulated using time-dependent DFT methods for the first time for a series of compounds spanning the high-valent states +4, +5, and +6 for iron. A remarkably good correlation of these simulated pre-edge features with experimental data on isolated high-valent intermediates has been found, allowing us to assign the main pre-edge features to excitations into the empty Fe d(z(2)) orbital, which is able to mix with Fe 4p(z), allowing an efficient mechanism for the intensification of pre-edge features.
合成化学的最新进展促使人们发现了具有Fe(v)和Fe(vi)价态的“超氧化”铁中心[K. Meyer等人,《美国化学会志》,1999年,121卷,4859 - 4876页;J. F. Berry等人,《科学》,2006年,312卷,1937 - 1941页;F. T. de Oliveira等人,《科学》,2007年,315卷,835 - 838页]。此外,近年来人们发现一些高价Fe(iv)物种作为金属酶中的反应中间体,并且在模型体系中也得到了表征[C. Krebs等人,《化学研究述评》,2007年,40卷,484 - 492页;L. Que, Jr,《化学研究述评》,2007年,40卷,493 - 500页]。这些物种几乎总是由高碱性配体X(n - )稳定,该配体要么是O(2 - )要么是N(3 - )。作为氧化态函数的氧代和氮代物种在结构和键合上的差异及其对可观测光谱性质的影响从未得到仔细评估。因此,在这项工作中,通过计算对一系列假设的反式 - [FeO(NH₃)₄OH](+/2+/3 + ) (1 - 3)和反式 - [FeN(NH₃)₄OH](0/+/2 + ) (4 - 6)配合物中具有Fe = O或Fe = N多重键的高价铁配合物之间的基本差异进行了探究。与Fe = O键相比,Fe = N多重键本质上具有更强的共价性,这渗透在所有计算性质中。这种差异可能是由于N和O之间有效核电荷(Z*)的差异,使得在Fe = N多重键的情况下能够发生更好的轨道重叠。使用精细的多参考从头算计算来研究自旋态能量学,结果表明所有物种1 - 6都对低自旋态有内在偏好,除了1的情况,其中S = 1和S = 2态的能量非常接近。除了穆斯堡尔参数、g张量、零场分裂和铁超精细耦合外,首次使用含时密度泛函理论方法对一系列涵盖铁的 + 4、+ 5和 + 6高价态的化合物模拟了X射线吸收Fe K边前光谱。已发现这些模拟的边前特征与分离的高价中间体的实验数据具有非常好的相关性,这使我们能够将主要的边前特征归因于激发到空的Fe d(z²)轨道,该轨道能够与Fe 4p(z)混合,从而为边前特征的增强提供了一种有效机制。