Lu Benzhuo, Zhou Y C, Huber Gary A, Bond Stephen D, Holst Michael J, McCammon J Andrew
Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California 92093-0365, USA.
J Chem Phys. 2007 Oct 7;127(13):135102. doi: 10.1063/1.2775933.
A computational framework is presented for the continuum modeling of cellular biomolecular diffusion influenced by electrostatic driving forces. This framework is developed from a combination of state-of-the-art numerical methods, geometric meshing, and computer visualization tools. In particular, a hybrid of (adaptive) finite element and boundary element methods is adopted to solve the Smoluchowski equation (SE), the Poisson equation (PE), and the Poisson-Nernst-Planck equation (PNPE) in order to describe electrodiffusion processes. The finite element method is used because of its flexibility in modeling irregular geometries and complex boundary conditions. The boundary element method is used due to the convenience of treating the singularities in the source charge distribution and its accurate solution to electrostatic problems on molecular boundaries. Nonsteady-state diffusion can be studied using this framework, with the electric field computed using the densities of charged small molecules and mobile ions in the solvent. A solution for mesh generation for biomolecular systems is supplied, which is an essential component for the finite element and boundary element computations. The uncoupled Smoluchowski equation and Poisson-Boltzmann equation are considered as special cases of the PNPE in the numerical algorithm, and therefore can be solved in this framework as well. Two types of computations are reported in the results: stationary PNPE and time-dependent SE or Nernst-Planck equations solutions. A biological application of the first type is the ionic density distribution around a fragment of DNA determined by the equilibrium PNPE. The stationary PNPE with nonzero flux is also studied for a simple model system, and leads to an observation that the interference on electrostatic field of the substrate charges strongly affects the reaction rate coefficient. The second is a time-dependent diffusion process: the consumption of the neurotransmitter acetylcholine by acetylcholinesterase, determined by the SE and a single uncoupled solution of the Poisson-Boltzmann equation. The electrostatic effects, counterion compensation, spatiotemporal distribution, and diffusion-controlled reaction kinetics are analyzed and different methods are compared.
提出了一个计算框架,用于对受静电驱动力影响的细胞生物分子扩散进行连续介质建模。该框架是由先进的数值方法、几何网格划分和计算机可视化工具相结合开发而成的。特别是,采用了(自适应)有限元法和边界元法的混合方法来求解斯莫卢霍夫斯基方程(SE)、泊松方程(PE)和泊松 - 能斯特 - 普朗克方程(PNPE),以描述电扩散过程。使用有限元法是因为它在对不规则几何形状和复杂边界条件进行建模时具有灵活性。使用边界元法是由于其在处理源电荷分布中的奇点方面的便利性以及对分子边界上静电问题的精确求解。利用该框架可以研究非稳态扩散,通过溶剂中带电小分子和移动离子的密度来计算电场。提供了一种生物分子系统的网格生成解决方案,这是有限元和边界元计算的一个重要组成部分。在数值算法中,未耦合的斯莫卢霍夫斯基方程和泊松 - 玻尔兹曼方程被视为PNPE的特殊情况,因此也可以在该框架中求解。结果中报告了两种类型的计算:稳态PNPE以及与时间相关的SE或能斯特 - 普朗克方程的解。第一种类型的一个生物学应用是由平衡PNPE确定的DNA片段周围的离子密度分布。还针对一个简单模型系统研究了具有非零通量的稳态PNPE,得出的观察结果是底物电荷对静电场的干扰强烈影响反应速率系数。第二种是与时间相关的扩散过程:乙酰胆碱酯酶对神经递质乙酰胆碱的消耗,由SE和泊松 - 玻尔兹曼方程的单个未耦合解确定。分析了静电效应、抗衡离子补偿、时空分布和扩散控制的反应动力学,并比较了不同的方法。