Janga Sarath Chandra, Salgado Heladia, Martínez-Antonio Agustino
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
Nucleic Acids Res. 2009 Jun;37(11):3680-8. doi: 10.1093/nar/gkp231. Epub 2009 Apr 16.
Transcription factors (TFs) are the key elements responsible for controlling the expression of genes in bacterial genomes and when visualized on a genomic scale form a dense network of transcriptional interactions among themselves and with other protein coding genes. Although the structure of transcriptional regulatory networks (TRNs) is well understood, it is not clear what constrains govern them. Here, we explore this question using the TRNs of model prokaryotes and provide a link between the transcriptional hierarchy of regulons and their genome organization. We show that, to drive the kinetics and concentration gradients, TFs belonging to big and small regulons, depending on the number of genes they regulate, organize themselves differently on the genome with respect to their targets. We then propose a conceptual model that can explain how the hierarchical structure of TRNs might be ultimately governed by the dynamic biophysical requirements for targeting DNA-binding sites by TFs. Our results suggest that the main parameters defining the position of a TF in the network hierarchy are the number and chromosomal distances of the genes they regulate and their protein concentration gradients. These observations give insights into how the hierarchical structure of transcriptional networks can be encoded on the chromosome to drive the kinetics and concentration gradients of TFs depending on the number of genes they regulate and could be a common theme valid for other prokaryotes, proposing the role of transcriptional regulation in shaping the organization of genes on a chromosome.
转录因子(TFs)是负责控制细菌基因组中基因表达的关键元件,当在基因组规模上可视化时,它们相互之间以及与其他蛋白质编码基因形成密集的转录相互作用网络。尽管转录调控网络(TRNs)的结构已得到充分理解,但尚不清楚是什么约束在支配它们。在这里,我们使用模式原核生物的TRNs来探索这个问题,并提供了操纵子的转录层次与其基因组组织之间的联系。我们表明,为了驱动动力学和浓度梯度,根据所调控基因的数量,属于大操纵子和小操纵子的转录因子在基因组上相对于其靶标以不同方式进行自我组织。然后,我们提出了一个概念模型,该模型可以解释TRNs的层次结构如何最终由转录因子靶向DNA结合位点的动态生物物理需求所支配。我们的结果表明,定义转录因子在网络层次中位置的主要参数是它们所调控基因的数量、染色体距离以及它们的蛋白质浓度梯度。这些观察结果深入揭示了转录网络的层次结构如何在染色体上进行编码,以根据转录因子所调控基因的数量驱动其动力学和浓度梯度,并且这可能是对其他原核生物有效的共同主题,提出了转录调控在塑造染色体上基因组织方面的作用。