Department of Biochemistry, University of Cambridge, Cambridge, UK.
MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
EcoSal Plus. 2020 Feb;9(1). doi: 10.1128/ecosalplus.ESP-0016-2019.
In this article, we summarize our current understanding of the bacterial genetic regulation brought about by decades of studies using the model. It became increasingly evident that the cellular genetic regulation system is organizationally closed, and a major challenge is to describe its circular operation in quantitative terms. We argue that integration of the DNA analog information (i.e., the probability distribution of the thermodynamic stability of base steps) and digital information (i.e., the probability distribution of unique triplets) in the genome provides a key to understanding the organizational logic of genetic control. During bacterial growth and adaptation, this integration is mediated by changes of DNA supercoiling contingent on environmentally induced shifts in intracellular ionic strength and energy charge. More specifically, coupling of dynamic alterations of the local intrinsic helical repeat in the structurally heterogeneous DNA polymer with structural-compositional changes of RNA polymerase holoenzyme emerges as a fundamental organizational principle of the genetic regulation system. We present a model of genetic regulation integrating the genomic pattern of DNA thermodynamic stability with the gene order and function along the chromosomal OriC-Ter axis, which acts as a principal coordinate system organizing the regulatory interactions in the genome.
在本文中,我们总结了几十年来使用该模型进行研究得出的关于细菌遗传调控的现有认识。越来越明显的是,细胞遗传调控系统在组织上是封闭的,主要挑战是用定量术语来描述其循环运作。我们认为,整合 DNA 类似物信息(即碱基步热力学稳定性的概率分布)和数字信息(即独特三联体的概率分布)在基因组中提供了理解遗传控制组织逻辑的关键。在细菌生长和适应过程中,这种整合是通过依赖于细胞内离子强度和能量电荷诱导变化的 DNA 超螺旋的变化来介导的。更具体地说,与 RNA 聚合酶全酶的结构-组成变化相结合的结构异构 DNA 聚合物中局部固有螺旋重复的动态变化,作为遗传调控系统的基本组织原则出现。我们提出了一个遗传调控模型,将 DNA 热力学稳定性的基因组模式与沿着染色体 OriC-Ter 轴的基因顺序和功能整合在一起,该模型作为一个主要坐标系,组织基因组中的调控相互作用。