Suppr超能文献

脊髓损伤后的神经胶质和轴突再生。

Glial and axonal regeneration following spinal cord injury.

机构信息

Department of Orthopaedic Surgery, School of Medicine, Kagawa University, Miki-cho, Kagawa, Japan.

出版信息

Cell Adh Migr. 2009 Jan-Mar;3(1):99-106. doi: 10.4161/cam.3.1.7372. Epub 2009 Jan 7.

Abstract

Spinal cord injury (SCI) has been regarded clinically as an irreversible damage caused by tissue contusion due to a blunt external force. Past research had focused on the analysis of the pathogenesis of secondary injury that extends from the injury epicenter to the periphery, as well as tissue damage and neural cell death associated with secondary injury. Recent studies, however, have proven that neural stem (progenitor) cells are also present in the brain and spinal cord of adult mammals including humans. Analyses using spinal cord injury models have also demonstrated active dynamics of cells expressing several stem cell markers, and methods aiming at functional reconstruction by promoting the potential self-regeneration capacity of the spinal cord are being explored. Furthermore, reconstruction of the neural circuit requires not only replenishment or regeneration of neural cells but also regeneration of axons. Analysis of the tissue microenvironment after spinal cord injury and research aiming to remove axonal regeneration inhibitors have also made progress. SCI is one of the simplest central nervous injuries, but its pathogenesis is associated with diverse factors, and further studies are required to elucidate these complex interactions in order to achieve spinal cord regeneration and functional reconstruction.

摘要

脊髓损伤(SCI)在临床上被认为是由钝性外力引起的组织挫伤导致的不可逆转的损伤。过去的研究主要集中在分析从中枢损伤部位向周围延伸的继发性损伤的发病机制,以及继发性损伤相关的组织损伤和神经细胞死亡。然而,最近的研究已经证明,包括人类在内的成年哺乳动物的大脑和脊髓中也存在神经干细胞(祖细胞)。利用脊髓损伤模型的分析也表明,表达几种干细胞标志物的细胞具有活跃的动力学特性,并且正在探索通过促进脊髓的潜在自我再生能力来实现功能重建的方法。此外,神经回路的重建不仅需要补充或再生神经细胞,还需要轴突的再生。对脊髓损伤后的组织微环境的分析以及旨在去除轴突再生抑制剂的研究也取得了进展。SCI 是最简单的中枢神经系统损伤之一,但它的发病机制与多种因素有关,需要进一步研究以阐明这些复杂的相互作用,从而实现脊髓的再生和功能重建。

相似文献

1
Glial and axonal regeneration following spinal cord injury.
Cell Adh Migr. 2009 Jan-Mar;3(1):99-106. doi: 10.4161/cam.3.1.7372. Epub 2009 Jan 7.
2
Resection of glial scar following spinal cord injury.
J Orthop Res. 2009 Jul;27(7):931-6. doi: 10.1002/jor.20793.
3
4
Olfactory ensheathing cells: bridging the gap in spinal cord injury.
Neurosurgery. 2000 Nov;47(5):1057-69. doi: 10.1097/00006123-200011000-00006.
6
Neural Stem Cells: Promoting Axonal Regeneration and Spinal Cord Connectivity.
Cells. 2021 Nov 25;10(12):3296. doi: 10.3390/cells10123296.
9
A Combinatorial Approach to Induce Sensory Axon Regeneration into the Dorsal Root Avulsed Spinal Cord.
Stem Cells Dev. 2017 Jul 15;26(14):1065-1077. doi: 10.1089/scd.2017.0019. Epub 2017 May 31.

引用本文的文献

1
Can repetitive mechanical motion cause structural damage to axons?
Front Mol Neurosci. 2024 Jun 7;17:1371738. doi: 10.3389/fnmol.2024.1371738. eCollection 2024.
3
Safety and Efficacy of Rose Bengal Derivatives for Glial Scar Ablation in Chronic Spinal Cord Injury.
J Neurotrauma. 2018 Aug 1;35(15):1745-1754. doi: 10.1089/neu.2017.5398. Epub 2018 Apr 19.
4
Methotrexate and Valproic Acid Affect Early Neurogenesis of Human Amniotic Fluid Stem Cells from Myelomeningocele.
Stem Cells Int. 2017;2017:6101609. doi: 10.1155/2017/6101609. Epub 2017 Sep 13.
5
Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target.
J Pharmacol Exp Ther. 2017 Dec;363(3):303-313. doi: 10.1124/jpet.117.244806. Epub 2017 Sep 21.
6
IKVAV-linked cell membrane-spanning peptide treatment induces neuronal reactivation following spinal cord injury.
Future Sci OA. 2015 Nov 1;1(4):FSO81. doi: 10.4155/fso.15.81. eCollection 2015 Nov.
7
Silk Nanofiber Hydrogels with Tunable Modulus to Regulate Nerve Stem Cell Fate.
J Mater Chem B. 2014 Oct 14;2(38):6590-6600. doi: 10.1039/C4TB00878B.
8
Adult spinal cord radial glia display a unique progenitor phenotype.
PLoS One. 2011;6(9):e24538. doi: 10.1371/journal.pone.0024538. Epub 2011 Sep 12.

本文引用的文献

2
Differential activation of astrocytes and microglia after spinal cord injury in the fetal rat.
Eur Spine J. 2006 Feb;15(2):223-33. doi: 10.1007/s00586-005-0933-3. Epub 2005 Nov 16.
4
Co-expression of radial glial marker in macrophages/microglia in rat spinal cord contusion injury model.
Brain Res. 2005 Jul 27;1051(1-2):183-8. doi: 10.1016/j.brainres.2005.05.054.
6
Microglia: neuroprotective and neurotrophic cells in the central nervous system.
Curr Drug Targets Cardiovasc Haematol Disord. 2004 Mar;4(1):65-84. doi: 10.2174/1568006043481284.
8
Synantocytes: new functions for novel NG2 expressing glia.
J Neurocytol. 2002 Jul-Aug;31(6-7):551-65. doi: 10.1023/a:1025751900356.
9
Cytology and lineage of NG2-positive glia.
J Neurocytol. 2002 Jul-Aug;31(6-7):457-67. doi: 10.1023/a:1025735513560.
10
Identity, distribution, and development of polydendrocytes: NG2-expressing glial cells.
J Neurocytol. 2002 Jul-Aug;31(6-7):437-55. doi: 10.1023/a:1025783412651.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验