Suppr超能文献

基于线粒体的脊髓损伤治疗方法:线粒体生物合成作为潜在的药理学靶点

Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target.

作者信息

Scholpa Natalie E, Schnellmann Rick G

机构信息

Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (N.E.S., R.G.S.); and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.).

Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (N.E.S., R.G.S.); and Southern Arizona VA Health Care System, Tucson, Arizona (R.G.S.)

出版信息

J Pharmacol Exp Ther. 2017 Dec;363(3):303-313. doi: 10.1124/jpet.117.244806. Epub 2017 Sep 21.

Abstract

Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI.

摘要

脊髓损伤(SCI)的特征是初始创伤后接着是一系列称为继发性损伤的渐进性损伤。继发性损伤的一个标志是血管破坏,导致血管收缩和氧气输送减少,这直接降低了线粒体维持内环境稳定的能力,并导致依赖ATP的细胞功能丧失、钙超载、兴奋性毒性和氧化应激,进一步加剧损伤。在脊髓损伤后继发性损伤的急性期恢复线粒体功能障碍是一种潜在有效的治疗策略。本综述讨论了过去和现在治疗脊髓损伤的药理学选择以及目前针对线粒体的研究方法。增加抗氧化活性、抑制线粒体通透性转换、替代能源以及操纵线粒体形态是正在研究的策略。不幸的是,这些策略中的许多都只解决了线粒体功能障碍的单个方面,最终证明大多无效。因此,本综述还研究了药物增强线粒体生物合成尚未探索的治疗效果,这有可能更全面地改善脊髓损伤后的线粒体功能。

相似文献

1
Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target.
J Pharmacol Exp Ther. 2017 Dec;363(3):303-313. doi: 10.1124/jpet.117.244806. Epub 2017 Sep 21.
2
5-hydroxytryptamine 1F Receptor Agonist Induces Mitochondrial Biogenesis and Promotes Recovery from Spinal Cord Injury.
J Pharmacol Exp Ther. 2020 Feb;372(2):216-223. doi: 10.1124/jpet.119.262410. Epub 2019 Nov 27.
5
[Advances of the role of mitochondrial dysfunction in the spinal cord injury and its relevant treatments].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2022 Jul 15;36(7):902-907. doi: 10.7507/1002-1892.202203081.
6
Nanoparticles with antioxidant enzymes protect injured spinal cord from neuronal cell apoptosis by attenuating mitochondrial dysfunction.
J Control Release. 2020 Jan 10;317:300-311. doi: 10.1016/j.jconrel.2019.12.001. Epub 2019 Dec 2.
7
Mitochondrial biogenesis: pharmacological approaches.
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
8
β-adrenergic receptor-mediated mitochondrial biogenesis improves skeletal muscle recovery following spinal cord injury.
Exp Neurol. 2019 Dec;322:113064. doi: 10.1016/j.expneurol.2019.113064. Epub 2019 Sep 13.

引用本文的文献

2
Antioxidant nanozymes: current status and future perspectives in spinal cord injury treatments.
Theranostics. 2025 May 8;15(13):6146-6183. doi: 10.7150/thno.114836. eCollection 2025.
4
SOX Genes in Spinal Cord Injury: Redefining Neural Stem Cell Regeneration Strategies.
Mol Neurobiol. 2025 Mar 29. doi: 10.1007/s12035-025-04882-w.
5
Mitochondrial-targeted therapies in traumatic brain injury: From bench to bedside.
Neurotherapeutics. 2025 Jan;22(1):e00515. doi: 10.1016/j.neurot.2024.e00515. Epub 2024 Dec 24.
6
Evolution of Lipid Metabolism in the Injured Mouse Spinal Cord.
J Neurotrauma. 2025 Feb;42(3-4):182-196. doi: 10.1089/neu.2024.0385. Epub 2024 Dec 17.
9

本文引用的文献

2
Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases.
J Med Chem. 2016 Dec 8;59(23):10411-10434. doi: 10.1021/acs.jmedchem.6b00669. Epub 2016 Sep 27.
3
Inflammogenesis of Secondary Spinal Cord Injury.
Front Cell Neurosci. 2016 Apr 13;10:98. doi: 10.3389/fncel.2016.00098. eCollection 2016.
4
Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats.
Neuroscience. 2016 Jul 22;328:40-9. doi: 10.1016/j.neuroscience.2016.04.031. Epub 2016 Apr 27.
7
Time representation of mitochondrial morphology and function after acute spinal cord injury.
Neural Regen Res. 2016 Jan;11(1):137-43. doi: 10.4103/1673-5374.175061.
9
Mitochondrial Biogenesis as a Pharmacological Target: A New Approach to Acute and Chronic Diseases.
Annu Rev Pharmacol Toxicol. 2016;56:229-49. doi: 10.1146/annurev-pharmtox-010715-103155. Epub 2015 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验