Stierstorfer Jörg, Tarantik Karina R, Klapötke Thomas M
Department Chemistry and Biochemistry, Energetic Materials Research, Ludwig-Maximilian University of Munich, Butenandtstrasse 5-13, 81377 Munich, Germany.
Chemistry. 2009 Jun 2;15(23):5775-92. doi: 10.1002/chem.200802203.
Alkylation of 5-aminotetrazole (1) with 2-chloroethanol leads to a mixture of the N-1 and N-2 isomers of (2-hydroxyethyl)-5-aminotetrazole. Treatment of 1-(2-hydroxyethyl)-5-aminotetrazole (2) with SOCl(2) yielded 1-(2-chlorethyl)-5-aminotetrazole (3). 1-(2-Azidoethyl)-5-aminotetrazole (4) was generated by the reaction of 3 with sodium azide. Nitration of 2, 3, and 4 with HNO(3) (100%) yielded in the case of 2 and 3 1-(2-hydroxyethyl)-5-nitriminotetrazole (5) and 1-(2-chloroethyl)-5-nitriminotetrazole (6). In the case of 4, 1-(2-nitratoethyl)-5-nitriminotetrazole monohydrate (7) was obtained. 1-(2-Azidoethyl)-5-nitriminotetrazole (8) could be obtained by nitration of 4 with NO(2)BF(4) via the formation of potassium 1-(2-azidoethyl)-5-nitriminotetrazolate (9). The reaction of 6 with NaN(3) resulted in the formation of the salt sodium 1-(2-chloroethyl)-5-nitriminotetrazolate (10 a). The deprotonation reaction of 6 was further investigated by the formation of the ammonium salt (10 b). The protonation of 2 and 4 with dilute nitric acid led to 1-(2-hydroxyethyl)-5-aminotetrazolium nitrate (11) and 1-(2-azidoethyl)-5-aminotetrazolium nitrate (12), respectively. Similarly, protonation of 4 with perchloric acid led to 1-(2-azidoethyl)-5-aminotetrazolium perchlorate monohydrate (13). Since 5-nitrimino-tetrazoles can be used as bidentate ligands, the coordination abilities of 5, 6, and 8 were tested by the reaction with copper nitrate trihydrate, yielding the copper complexes trans-[diaquabis{1-(2-hydroxyethyl)-5-nitriminotetrazolato-kappa(2)N(4),O(5)}copper(II)] (14), trans-[diaquabis{1-(2-chloroethyl)-5-nitriminotetrazolato-kappa(2)N(4),O(5)}copper(II)] dihydrate (15), and [diaquabis{1-(2-azidoethyl)-5-nitriminotetrazolato-kappa(2)N(4),O(5)}copper(II)] (16). All compounds were characterized by low-temperature single-crystal X-ray diffraction. In addition, comprehensive characterization (IR, Raman, and multinuclear NMR spectroscopy ((1)H, (13)C), elemental analysis, mass spectrometry, DSC) was performed. The heats of formation of selected compounds were computed by using heats of combustion obtained by bomb calorimetry or calculated by the atomization method. With these values and the densities determined from X-ray crystallography, several detonation parameter were calculated by the EXPLO5 program. Finally, the sensitivities towards impact and friction were determined using a BAM drop hammer and friction tester.
5-氨基四唑(1)与2-氯乙醇发生烷基化反应,生成(2-羟乙基)-5-氨基四唑的N-1和N-2异构体混合物。用亚硫酰氯处理1-(2-羟乙基)-5-氨基四唑(2)得到1-(2-氯乙基)-5-氨基四唑(3)。3与叠氮化钠反应生成1-(2-叠氮基乙基)-5-氨基四唑(4)。用100%硝酸对2、3和4进行硝化反应,2和3分别生成1-(2-羟乙基)-5-硝亚胺基四唑(5)和1-(2-氯乙基)-5-硝亚胺基四唑(6)。对于4,得到1-(2-硝基乙基)-5-硝亚胺基四唑一水合物(7)。4用四氟硼酸硝进行硝化反应,通过形成1-(2-叠氮基乙基)-5-硝亚胺基四唑钾盐(9)可得到1-(2-叠氮基乙基)-5-硝亚胺基四唑(8)。6与叠氮化钠反应生成盐1-(2-氯乙基)-5-硝亚胺基四唑钠盐(10a)。通过形成铵盐(10b)进一步研究了6的去质子化反应。2和4用稀硝酸质子化分别生成1-(2-羟乙基)-5-氨基四唑硝酸盐(11)和1-(2-叠氮基乙基)-5-氨基四唑硝酸盐(12)。类似地,4用高氯酸质子化生成1-(2-叠氮基乙基)-5-氨基四唑高氯酸盐一水合物(13)。由于5-硝亚胺基四唑可用作双齿配体,通过与三水合硝酸铜反应测试了5、6和8的配位能力,得到铜配合物反式-[二水双{1-(2-羟乙基)-5-硝亚胺基四唑合-κ(2)N(4),O(5)}铜(II)](14)、反式-[二水双{1-(2-氯乙基)-5-硝亚胺基四唑合-κ(2)N(4),O(5)}铜(II)]二水合物(15)和[二水双{1-(2-叠氮基乙基)-5-硝亚胺基四唑合-κ(2)N(4),O(5)}铜(II)](16)。所有化合物均通过低温单晶X射线衍射进行表征。此外,还进行了全面表征(红外光谱、拉曼光谱和多核核磁共振光谱((1)H、(13)C)、元素分析、质谱、差示扫描量热法)。通过使用弹式量热法获得的燃烧热或通过原子化方法计算得到的燃烧热来计算所选化合物的生成热。利用这些值以及由X射线晶体学测定的密度,通过EXPLO5程序计算了几个爆轰参数。最后,使用BAM落锤和摩擦测试仪测定了对冲击和摩擦的敏感度。