Bachmann Brian O, Ravel Jacques
Department of Chemistry, Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.
Methods Enzymol. 2009;458:181-217. doi: 10.1016/S0076-6879(09)04808-3.
Fore-knowledge of the secondary metabolic potential of cultivated and previously uncultivated microorganisms can potentially facilitate the process of natural product discovery. By combining sequence-based knowledge with biochemical precedent, translated gene sequence data can be used to rapidly derive structural elements encoded by secondary metabolic gene clusters from microorganisms. These structural elements provide an estimate of the secondary metabolic potential of a given organism and a starting point for identification of potential lead compounds in isolation/structure elucidation campaigns. The accuracy of these predictions for a given translated gene sequence depends on the biochemistry of the metabolite class, similarity to known metabolite gene clusters, and depth of knowledge concerning its biosynthetic machinery. This chapter introduces methods for prediction of structural elements for two well-studied classes: modular polyketides and nonribosomally encoded peptides. A bioinformatics tool is presented for rapid preliminary analysis of these modular systems, and prototypical methods for converting these analyses into substructural elements are described.
了解已培养和先前未培养微生物的次生代谢潜力,可能有助于天然产物的发现过程。通过将基于序列的知识与生化先例相结合,翻译后的基因序列数据可用于快速推导微生物次生代谢基因簇编码的结构元件。这些结构元件可用于估计特定生物体的次生代谢潜力,并为在分离/结构阐明活动中鉴定潜在的先导化合物提供一个起点。对于给定的翻译基因序列,这些预测的准确性取决于代谢物类别的生物化学、与已知代谢物基因簇的相似性以及关于其生物合成机制的知识深度。本章介绍了预测两个研究充分的类别(模块化聚酮化合物和非核糖体编码肽)结构元件的方法。本文介绍了一种用于对这些模块化系统进行快速初步分析的生物信息学工具,并描述了将这些分析转化为亚结构元件的典型方法。