Chuang Yao-Chung, Lin Jui-Wei, Chen Shang-Der, Lin Tsu-Kung, Liou Chia-Wei, Lu Cheng-Hsien, Chang Wen-Neng
Department of Neurology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
Seizure. 2009 Jul;18(6):420-8. doi: 10.1016/j.seizure.2009.03.002. Epub 2009 Apr 17.
Status epilepticus results in mitochondrial damage or dysfunction and preferential neuronal cell loss in the hippocampus. Since a critical determinant of the eventual cell death fate resides in intracellular ATP concentration, we investigated whether mitochondrial integrity and level of energy metabolism are related with apoptotic cell death in specific hippocampal neuronal populations. A kainic acid (KA)-induced experimental temporal lobe status epilepticus model was used. Qualitative and quantitative analysis of DNA fragmentation, TUNEL immunohistochemistry, double immunofluorescence staining for activated caspase-3, electron microscopy or measurement of ATP level in the bilateral hippocampus was carried out 1, 3 or 7 days after microinjection unilaterally of a low dose of KA (0.5 nmol) into the CA3 hippocampal subfield. Characteristic biochemical (DNA fragmentation), histochemical (TUNEL or activated caspase-3 staining) or ultrastructural (electron microscopy) features of apoptotic cell death were presented bilaterally in the hippocampus 7 days after the elicitation of sustained hippocampal seizure activity by microinjection of KA into the unilateral CA3 subfield. At the same time, CA3 or CA1 subfield on either side manifested a maintained ATP level; alongside relatively intact mitochondria, rough endoplasmic reticulum, Golgi apparatus or cytoplasmic membrane in hippocampal neurons that exhibited ultrastructural features of apoptotic cell death. Our results demonstrated that preserved mitochondrial ultrastructural integrity and maintained energy metabolism during experimental temporal lobe status epilepticus is associated specifically with apoptotic, not necrotic, cell death in hippocampal CA3 or CA1 neurons.
癫痫持续状态会导致线粒体损伤或功能障碍,并导致海马体中神经元细胞选择性死亡。由于最终细胞死亡命运的一个关键决定因素在于细胞内ATP浓度,我们研究了线粒体完整性和能量代谢水平是否与特定海马神经元群体中的凋亡性细胞死亡有关。我们使用了海人酸(KA)诱导的实验性颞叶癫痫持续状态模型。在单侧海马CA3亚区微量注射低剂量KA(0.5 nmol)后1、3或7天,对双侧海马的DNA片段化进行定性和定量分析、TUNEL免疫组化、活化半胱天冬酶-3的双重免疫荧光染色、电子显微镜检查或ATP水平测量。在通过向单侧CA3亚区微量注射KA引发持续性海马癫痫活动7天后,海马双侧呈现出凋亡性细胞死亡的特征性生化(DNA片段化)、组织化学(TUNEL或活化半胱天冬酶-3染色)或超微结构(电子显微镜)特征。与此同时,两侧的CA3或CA1亚区表现出ATP水平维持;海马神经元中的线粒体、粗面内质网、高尔基体或细胞质膜相对完整,呈现出凋亡性细胞死亡的超微结构特征。我们的结果表明,在实验性颞叶癫痫持续状态期间,线粒体超微结构的完整性得以保留,能量代谢得以维持,这与海马CA3或CA1神经元中的凋亡性而非坏死性细胞死亡具体相关。