Karvanen Juha, Harrell Frank E
National Institute for Health and Welfare, Mannerheimintie 166, Helsinki, Finland.
Stat Med. 2009 Jun 30;28(14):1957-66. doi: 10.1002/sim.3591.
We present a graphical method called the rank-hazard plot that visualizes the relative importance of covariates in a proportional hazards model. The key idea is to rank the covariate values and plot the relative hazard as a function of ranks scaled to interval [0, 1]. The relative hazard is plotted with respect to the reference hazard, which can be, for example, the hazard related to the median of the covariate. Transformation to scaled ranks allows plotting of covariates measured in different units in the same graph, which helps in the interpretation of the epidemiological relevance of the covariates. Rank-hazard plots show the difference of hazards between the extremes of the covariate values present in the data and can be used as a tool to check if the proportional hazards assumption leads to reasonable estimates for individuals with extreme covariate values. Alternative covariate definitions or different transformations applied to covariates can be also compared using rank-hazard plots. We apply rank-hazard plots to the data from the FINRISK study where population-based cohorts have been followed up for events of cardiovascular diseases and compare the relative importance of the covariates cholesterol, smoking, blood pressure and body mass index. The data from the Study to Understand Prognoses Preferences Outcomes and Risks of Treatment (SUPPORT) are used to visualize nonlinear covariate effects. The proposed graphics work in other regression models with different interpretations of the y-axis.
我们提出了一种名为秩-风险图的图形方法,该方法可直观呈现协变量在比例风险模型中的相对重要性。其关键思想是对协变量值进行排序,并将相对风险绘制为按比例缩放到区间[0, 1]的秩的函数。相对风险是相对于参考风险绘制的,例如,参考风险可以是与协变量中位数相关的风险。转换为缩放秩允许在同一图表中绘制以不同单位测量的协变量,这有助于解释协变量的流行病学相关性。秩-风险图显示了数据中协变量值极端情况之间的风险差异,并且可以用作一种工具来检查比例风险假设是否能为具有极端协变量值的个体提供合理估计。还可以使用秩-风险图比较协变量的替代定义或应用于协变量的不同变换。我们将秩-风险图应用于芬兰全国 FINRISK 研究的数据,该研究对基于人群的队列进行了心血管疾病事件随访,并比较了胆固醇、吸烟、血压和体重指数等协变量的相对重要性。来自理解治疗的预后、偏好、结果和风险研究(SUPPORT)的数据用于直观呈现非线性协变量效应。所提出的图形在其他回归模型中也适用,只是对 y 轴有不同的解释。