From the Department of Medical Informatics, Biometry, and Epidemiology, Ruhr-University Bochum, Germany.
Epidemiology. 2023 Sep 1;34(5):652-660. doi: 10.1097/EDE.0000000000001630. Epub 2023 Jun 29.
Visualization is a key aspect of communicating the results of any study aiming to estimate causal effects. In studies with time-to-event outcomes, the most popular visualization approach is depicting survival curves stratified by the variable of interest. This approach cannot be used when the variable of interest is continuous. Simple workarounds, such as categorizing the continuous covariate and plotting survival curves for each category, can result in misleading depictions of the main effects. Instead, we propose a new graphic, the survival area plot, to directly depict the survival probability over time and as a function of a continuous covariate simultaneously. This plot utilizes g-computation based on a suitable time-to-event model to obtain the relevant estimates. Through the use of g-computation, those estimates can be adjusted for confounding without additional effort, allowing a causal interpretation under the standard causal identifiability assumptions. If those assumptions are not met, the proposed plot may still be used to depict noncausal associations. We illustrate and compare the proposed graphics to simpler alternatives using data from a large German observational study investigating the effect of the Ankle-Brachial Index on survival. To facilitate the usage of these plots, we additionally developed the contsurvplot R-package, which includes all methods discussed in this paper.
可视化是传达任何旨在估计因果效应的研究结果的关键方面。在具有事件时间结果的研究中,最流行的可视化方法是描绘按感兴趣变量分层的生存曲线。当感兴趣的变量是连续的时,不能使用这种方法。简单的解决方法,例如对连续协变量进行分类,并为每个类别绘制生存曲线,可能会导致对主要效应的误导性描述。相反,我们提出了一种新的图形,即生存面积图,以直接同时描绘随时间变化的生存概率和作为连续协变量的函数。该图利用基于合适的事件时间模型的 g 计算来获得相关估计值。通过使用 g 计算,可以在不增加额外工作的情况下调整混杂因素的估计值,从而在标准因果可识别性假设下进行因果解释。如果这些假设不成立,那么即使在这种情况下,也可以使用建议的图形来描绘非因果关联。我们使用来自一个大型德国观察性研究的数据来说明和比较了建议的图形与更简单的替代图形,该研究调查了踝臂指数对生存的影响。为了方便使用这些图形,我们还开发了 contsurvplot R 包,其中包括本文讨论的所有方法。