Grunkemeier Gary L, Wu YingXing, Furnary Anthony P
Medical Data Research Center, Providence Health & Services, Portland, Oregon, USA.
Ann Thorac Surg. 2009 May;87(5):1337-43. doi: 10.1016/j.athoracsur.2009.03.027.
Successful publication of a research study usually requires a small p value, typically p < 0.05. Many clinicians believe that a p value represents the probability that the null hypothesis is true, so that a small p value means the null hypothesis must be false. In fact, the p value provides very weak evidence against the null hypothesis, and the probability that the null hypothesis is true is usually much greater than the p value would suggest. Moreover, even considering "the probability that the null hypothesis is true" is not possible with the usual statistical setup and requires a different (Bayesian) statistical approach. We describe the Bayesian approach using a well-established diagnostic testing analogy. Then, as a practical example, we compare the p-value result of a study of aprotinin-associated operative mortality with the more illuminative interpretation of the same study data using a Bayesian approach.
一项研究的成功发表通常需要一个较小的p值,通常为p < 0.05。许多临床医生认为p值代表了零假设为真的概率,因此小的p值意味着零假设一定为假。事实上,p值提供了非常微弱的反对零假设的证据,零假设为真的概率通常远大于p值所显示的。此外,即使考虑“零假设为真的概率”,在通常的统计设置下也是不可能的,这需要一种不同的(贝叶斯)统计方法。我们使用一个成熟的诊断测试类比来描述贝叶斯方法。然后,作为一个实际例子,我们将抑肽酶相关手术死亡率研究的p值结果与使用贝叶斯方法对同一研究数据进行的更具启发性的解释进行比较。