Suppr超能文献

大分子的分子动力学模拟中一级水合壳模型的改进。

Refinement of the primary hydration shell model for molecular dynamics simulations of large proteins.

机构信息

Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.

出版信息

J Comput Chem. 2009 Dec;30(16):2635-44. doi: 10.1002/jcc.21246.

Abstract

A realistic representation of water molecules is important in molecular dynamics simulation of proteins. However, the standard method of solvating biomolecules, that is, immersing them in a box of water with periodic boundary conditions, is computationally expensive. The primary hydration shell (PHS) method, developed more than a decade ago and implemented in CHARMM, uses only a thin shell of water around the system of interest, and so greatly reduces the computational cost of simulations. Applying the PHS method, especially to larger proteins, revealed that further optimization and a partial reworking was required and here we present several improvements to its performance. The model is applied to systems with different sizes, and both water and protein behaviors are compared with those observed in standard simulations with periodic boundary conditions and, in some cases, with experimental data. The advantages of the modified PHS method over its original implementation are clearly apparent when it is applied to simulating the 82 kDa protein Malate Synthase G.

摘要

水分子的真实表示在蛋白质的分子动力学模拟中非常重要。然而,标准的生物分子溶剂化方法,即将它们浸入具有周期性边界条件的盒子中的水,计算成本很高。十多年前开发并在 CHARMM 中实现的主要水合壳(PHS)方法仅使用感兴趣系统周围的一层薄水壳,从而大大降低了模拟的计算成本。应用 PHS 方法,特别是对于较大的蛋白质,表明需要进一步优化和部分重新设计,在此我们提出了对其性能的一些改进。该模型应用于不同大小的系统,并且比较了水和蛋白质的行为与在具有周期性边界条件的标准模拟中观察到的行为,并且在某些情况下与实验数据进行了比较。当应用于模拟 82 kDa 蛋白质苹果酸合成酶 G 时,改进的 PHS 方法相对于其原始实现的优势显然明显。

相似文献

2
MC-PHS: a Monte Carlo implementation of the primary hydration shell for protein folding and design.
Biophys J. 2003 Feb;84(2 Pt 1):805-15. doi: 10.1016/S0006-3495(03)74900-5.
3
Acceptable protein and solvent behavior in primary hydration shell simulations of hen lysozyme.
Biophys J. 2007 Apr 1;92(7):L49-51. doi: 10.1529/biophysj.106.103010. Epub 2007 Jan 26.
4
Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation.
J Phys Chem B. 2014 Jul 17;118(28):7715-29. doi: 10.1021/jp409805p. Epub 2014 Feb 10.
6
Towards molecular dynamics simulation of large proteins with a hydration shell at constant pressure.
Biophys Chem. 1999 Apr 5;78(1-2):157-82. doi: 10.1016/s0301-4622(98)00237-3.
7
In silico characterization of protein partial molecular volumes and hydration shells.
Phys Chem Chem Phys. 2015 Dec 14;17(46):31270-7. doi: 10.1039/c5cp05891k.
8
Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions.
Biophys J. 2006 Dec 15;91(12):4544-54. doi: 10.1529/biophysj.106.087726. Epub 2006 Sep 22.
9
10
Protein crowding affects hydration structure and dynamics.
J Am Chem Soc. 2012 Mar 14;134(10):4842-9. doi: 10.1021/ja211115q. Epub 2012 Mar 2.

引用本文的文献

1
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
2
Constant pH Molecular Dynamics Simulations of Nucleic Acids in Explicit Solvent.
J Chem Theory Comput. 2012 Jan 10;8(1):36-46. doi: 10.1021/ct2006314.

本文引用的文献

1
Refined solution structure of the 82-kDa enzyme malate synthase G from joint NMR and synchrotron SAXS restraints.
J Biomol NMR. 2008 Feb;40(2):95-106. doi: 10.1007/s10858-007-9211-5. Epub 2007 Nov 16.
2
Binding of Rac1, Rnd1, and RhoD to a novel Rho GTPase interaction motif destabilizes dimerization of the plexin-B1 effector domain.
J Biol Chem. 2007 Dec 21;282(51):37215-24. doi: 10.1074/jbc.M703800200. Epub 2007 Oct 4.
3
Acceptable protein and solvent behavior in primary hydration shell simulations of hen lysozyme.
Biophys J. 2007 Apr 1;92(7):L49-51. doi: 10.1529/biophysj.106.103010. Epub 2007 Jan 26.
4
Evaluation of Poisson solvation models using a hybrid explicit/implicit solvent method.
J Phys Chem B. 2005 Mar 24;109(11):5223-36. doi: 10.1021/jp046377z.
6
Scalable molecular dynamics with NAMD.
J Comput Chem. 2005 Dec;26(16):1781-802. doi: 10.1002/jcc.20289.
7
The Amber biomolecular simulation programs.
J Comput Chem. 2005 Dec;26(16):1668-88. doi: 10.1002/jcc.20290.
8
Generalized born model with a simple smoothing function.
J Comput Chem. 2003 Nov 15;24(14):1691-702. doi: 10.1002/jcc.10321.
9
Towards molecular dynamics simulation of large proteins with a hydration shell at constant pressure.
Biophys Chem. 1999 Apr 5;78(1-2):157-82. doi: 10.1016/s0301-4622(98)00237-3.
10
Effective energy function for proteins in solution.
Proteins. 1999 May 1;35(2):133-52. doi: 10.1002/(sici)1097-0134(19990501)35:2<133::aid-prot1>3.0.co;2-n.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验