Suppr超能文献

在显式溶剂中核酸的恒pH分子动力学模拟

Constant pH Molecular Dynamics Simulations of Nucleic Acids in Explicit Solvent.

作者信息

Goh Garrett B, Knight Jennifer L, Brooks Charles L

机构信息

Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States.

出版信息

J Chem Theory Comput. 2012 Jan 10;8(1):36-46. doi: 10.1021/ct2006314.

Abstract

The nucleosides of adenine and cytosine have pKa values of 3.50 and 4.08, respectively, and are assumed to be unprotonated under physiological conditions. However, evidence from recent NMR and X-Ray crystallography studies has revealed the prevalence of protonated adenine and cytosine in RNA macromolecules. Such nucleotides with elevated pKa values may play a role in stabilizing RNA structure and participate in the mechanism of ribozyme catalysis. With the work presented here, we establish the framework and demonstrate the first constant pH MD simulations (CPHMD) for nucleic acids in explicit solvent in which the protonation state is coupled to the dynamical evolution of the RNA system via λ-dynamics. We adopt the new functional form λ(Nexp) for λ that was recently developed for Multi-Site λ-Dynamics (MSλD) and demonstrate good sampling characteristics in which rapid and frequent transitions between the protonated and unprotonated states at pH = pKa are achieved. Our calculated pKa values of simple nucleotides are in a good agreement with experimentally measured values, with a mean absolute error of 0.24 pKa units. This work demonstrates that CPHMD can be used as a powerful tool to investigate pH-dependent biological properties of RNA macromolecules.

摘要

腺嘌呤和胞嘧啶的核苷的pKa值分别为3.50和4.08,在生理条件下被认为是未质子化的。然而,最近核磁共振和X射线晶体学研究的证据表明,在RNA大分子中质子化的腺嘌呤和胞嘧啶普遍存在。这种具有升高的pKa值的核苷酸可能在稳定RNA结构中发挥作用,并参与核酶催化机制。通过本文所展示的工作,我们建立了框架,并展示了在明确溶剂中对核酸进行的首次恒定pH分子动力学模拟(CPHMD),其中质子化状态通过λ动力学与RNA系统的动态演化相耦合。我们采用了最近为多位点λ动力学(MSλD)开发的新的λ函数形式λ(Nexp),并展示了良好的采样特性,即在pH = pKa时实现了质子化和未质子化状态之间快速且频繁的转变。我们计算得到的简单核苷酸的pKa值与实验测量值吻合良好,平均绝对误差为0.24个pKa单位。这项工作表明CPHMD可以用作研究RNA大分子pH依赖性生物学特性的有力工具。

相似文献

1
Constant pH Molecular Dynamics Simulations of Nucleic Acids in Explicit Solvent.
J Chem Theory Comput. 2012 Jan 10;8(1):36-46. doi: 10.1021/ct2006314.
2
pH-dependent dynamics of complex RNA macromolecules.
J Chem Theory Comput. 2013 Feb 12;9(2):935-943. doi: 10.1021/ct300942z. Epub 2013 Jan 3.
3
Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.
Proteins. 2014 Jul;82(7):1319-31. doi: 10.1002/prot.24499. Epub 2014 Jan 15.
4
Towards Accurate Prediction of Protonation Equilibrium of Nucleic Acids.
J Phys Chem Lett. 2013 Mar 7;4(5):760-766. doi: 10.1021/jz400078d. Epub 2013 Feb 12.
7
GPU-Accelerated Implementation of Continuous Constant pH Molecular Dynamics in Amber: p Predictions with Single-pH Simulations.
J Chem Inf Model. 2019 Nov 25;59(11):4821-4832. doi: 10.1021/acs.jcim.9b00754. Epub 2019 Nov 14.
8
Probing the Accuracy of Explicit Solvent Constant pH Molecular Dynamics Simulations for Peptides.
J Chem Theory Comput. 2020 Apr 14;16(4):2561-2569. doi: 10.1021/acs.jctc.9b01232. Epub 2020 Apr 1.
9
Constant pH Molecular Dynamics in Explicit Solvent with λ-Dynamics.
J Chem Theory Comput. 2011 Jun 14;7(6):1962-1978. doi: 10.1021/ct200061r. Epub 2011 Apr 25.
10
Uncovering pH-dependent transient states of proteins with buried ionizable residues.
J Am Chem Soc. 2014 Jun 18;136(24):8496-9. doi: 10.1021/ja5012564. Epub 2014 Jun 3.

引用本文的文献

1
Predicting Thermodynamic Stability at Protein G Sites with Deleterious Mutations Using λ-Dynamics with Competitive Screening.
J Phys Chem Lett. 2025 Apr 3;16(13):3206-3211. doi: 10.1021/acs.jpclett.5c00260. Epub 2025 Mar 21.
2
Characterizing RNA Oligomers Using Stochastic Titration Constant-pH Metadynamics Simulations.
J Chem Inf Model. 2025 Apr 14;65(7):3568-3580. doi: 10.1021/acs.jcim.4c02185. Epub 2025 Mar 18.
3
Constant pH Simulation with FMM Electrostatics in GROMACS. (A) Design and Applications.
J Chem Theory Comput. 2025 Feb 25;21(4):1762-1786. doi: 10.1021/acs.jctc.4c01318. Epub 2025 Feb 7.
4
Force Field Limitations of All-Atom Continuous Constant pH Molecular Dynamics.
J Phys Chem B. 2024 Nov 28;128(47):11616-11624. doi: 10.1021/acs.jpcb.4c05971. Epub 2024 Nov 12.
5
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
6
A pH-Dependent Coarse-Grained Model for Disordered Proteins: Histidine Interactions Modulate Conformational Ensembles.
J Phys Chem Lett. 2024 Sep 19;15(37):9419-9430. doi: 10.1021/acs.jpclett.4c02314. Epub 2024 Sep 9.
7
Histidine in Proteins: pH-Dependent Interplay between π-π, Cation-π, and CH-π Interactions.
J Chem Theory Comput. 2024 Aug 13;20(15):6930-6945. doi: 10.1021/acs.jctc.4c00606. Epub 2024 Jul 22.
8
Electromagnetic Field Stimulation Therapy for Alzheimer's Disease.
Neurology (Chic). 2024;3(1). Epub 2024 Jan 5.
9
Constant-pH Simulations with the Polarizable Atomic Multipole AMOEBA Force Field.
J Chem Theory Comput. 2024 Apr 9;20(7):2921-2933. doi: 10.1021/acs.jctc.3c01180. Epub 2024 Mar 20.
10
phbuilder: A Tool for Efficiently Setting up Constant pH Molecular Dynamics Simulations in GROMACS.
J Chem Inf Model. 2024 Feb 12;64(3):567-574. doi: 10.1021/acs.jcim.3c01313. Epub 2024 Jan 12.

本文引用的文献

1
Continuous Constant pH Molecular Dynamics in Explicit Solvent with pH-Based Replica Exchange.
J Chem Theory Comput. 2011 Aug 9;7(8):2617-29. doi: 10.1021/ct200146j. Epub 2011 Jul 1.
2
Multi-Site λ-dynamics for simulated Structure-Activity Relationship studies.
J Chem Theory Comput. 2011 Sep 13;7(9):2728-2739. doi: 10.1021/ct200444f.
3
Applying efficient implicit nongeometric constraints in alchemical free energy simulations.
J Comput Chem. 2011 Dec;32(16):3423-32. doi: 10.1002/jcc.21921. Epub 2011 Sep 14.
5
Constant pH Molecular Dynamics in Explicit Solvent with λ-Dynamics.
J Chem Theory Comput. 2011 Jun 14;7(6):1962-1978. doi: 10.1021/ct200061r. Epub 2011 Apr 25.
6
7
Predicting pKa values with continuous constant pH molecular dynamics.
Methods Enzymol. 2009;466:455-75. doi: 10.1016/S0076-6879(09)66019-5. Epub 2009 Nov 13.
8
Toward canonical ensemble distribution from self-guided Langevin dynamics simulation.
J Chem Phys. 2011 Apr 7;134(13):134108. doi: 10.1063/1.3574397.
10
The pH dependence of hairpin ribozyme catalysis reflects ionization of an active site adenine.
J Biol Chem. 2011 May 20;286(20):17658-64. doi: 10.1074/jbc.M111.234906. Epub 2011 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验