Suppr超能文献

多结构域神经细胞粘附分子复合体的弹性与破裂

Elasticity and rupture of a multi-domain neural cell adhesion molecule complex.

作者信息

Maruthamuthu Venkat, Schulten Klaus, Leckband Deborah

机构信息

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

出版信息

Biophys J. 2009 Apr 22;96(8):3005-14. doi: 10.1016/j.bpj.2008.12.3936.

Abstract

The neural cell adhesion molecule (NCAM) plays an important role in nervous system development. NCAM forms a complex between its terminal domains Ig1 and Ig2. When NCAM of cell A and of cell B connect to each other through complexes Ig12(A)/Ig12(B), the relative mobility of cells A and B and membrane tension exerts a force on the Ig12(A)/Ig12(B) complex. In this study, we investigated the response of the complex to force, using steered molecular dynamics. Starting from the structure of the complex from the Ig1-Ig2-Ig3 fragment, we first demonstrated that the complex, which differs in dimensions from a previous structure from the Ig1-Ig2 fragment in the crystal environment, assumes the same extension when equilibrated in solvent. We then showed that, when the Ig12(A)/Ig12(B) complex is pulled apart with forces 30-70 pN, it exhibits elastic behavior (with a spring constant of approximately 0.03 N/m) because of the relative reorientation of domains Ig1 and Ig2. At higher forces, the complex ruptures; i.e., Ig12(A) and Ig12(B) separate. The interfacial interactions between Ig12(A) and Ig12(B), monitored throughout elastic extension and rupture, identify E16, F19, K98, and L175 as key side chains stabilizing the complex.

摘要

神经细胞黏附分子(NCAM)在神经系统发育中发挥着重要作用。NCAM在其末端结构域Ig1和Ig2之间形成复合物。当细胞A和细胞B的NCAM通过复合物Ig12(A)/Ig12(B)相互连接时,细胞A和细胞B的相对迁移率以及膜张力会对Ig12(A)/Ig12(B)复合物施加力。在本研究中,我们使用引导分子动力学研究了该复合物对力的响应。从Ig1-Ig2-Ig3片段的复合物结构出发,我们首先证明,该复合物在尺寸上与晶体环境中Ig1-Ig2片段的先前结构不同,在溶剂中平衡时具有相同的伸展程度。然后我们表明,当Ig12(A)/Ig12(B)复合物以30 - 70 pN的力拉开时,由于结构域Ig1和Ig2的相对重新定向,它表现出弹性行为(弹簧常数约为0.03 N/m)。在更高的力作用下,复合物会断裂,即Ig12(A)和Ig12(B)分离。在整个弹性伸展和断裂过程中监测到的Ig12(A)和Ig12(B)之间的界面相互作用,确定E16、F19、K98和L175为稳定该复合物的关键侧链。

相似文献

1
Elasticity and rupture of a multi-domain neural cell adhesion molecule complex.
Biophys J. 2009 Apr 22;96(8):3005-14. doi: 10.1016/j.bpj.2008.12.3936.
2
Structure and interactions of NCAM Ig1-2-3 suggest a novel zipper mechanism for homophilic adhesion.
Structure. 2003 Oct;11(10):1291-301. doi: 10.1016/j.str.2003.09.006.
7
Structural basis of cell-cell adhesion by NCAM.
Nat Struct Biol. 2000 May;7(5):389-93. doi: 10.1038/75165.
9
Dissecting the Interaction of FGF8 with Receptor FGFRL1.
Biomolecules. 2020 Oct 1;10(10):1399. doi: 10.3390/biom10101399.
10
Crystal structure of the Ig1 domain of the neural cell adhesion molecule NCAM2 displays domain swapping.
J Mol Biol. 2008 Oct 24;382(5):1113-20. doi: 10.1016/j.jmb.2008.07.084. Epub 2008 Aug 6.

引用本文的文献

2
Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine.
Cytoskeleton (Hoboken). 2021 Jun;78(6):249-276. doi: 10.1002/cm.21658. Epub 2021 May 1.
3
Using Coarse-Grained Simulations to Characterize the Mechanisms of Protein-Protein Association.
Biomolecules. 2020 Jul 15;10(7):1056. doi: 10.3390/biom10071056.
4
Understanding the Impacts of Conformational Dynamics on the Regulation of Protein-Protein Association by a Multiscale Simulation Method.
J Chem Theory Comput. 2020 Aug 11;16(8):5323-5333. doi: 10.1021/acs.jctc.0c00439. Epub 2020 Jul 29.
5
A Multiscale Model to Predict Neuronal Cell Deformation with Varying Extracellular Matrix Stiffness and Topography.
Cell Mol Bioeng. 2020 May 4;13(3):229-245. doi: 10.1007/s12195-020-00615-2. eCollection 2020 Jun.
7
A computational model for understanding the oligomerization mechanisms of TNF receptor superfamily.
Comput Struct Biotechnol J. 2020 Jan 18;18:258-270. doi: 10.1016/j.csbj.2019.12.016. eCollection 2020.
8
Computational simulations of TNF receptor oligomerization on plasma membrane.
Proteins. 2020 May;88(5):698-709. doi: 10.1002/prot.25854. Epub 2019 Nov 18.
9
Tension- and Adhesion-Regulated Retraction of Injured Axons.
Biophys J. 2019 Jul 23;117(2):193-202. doi: 10.1016/j.bpj.2019.06.011. Epub 2019 Jun 20.
10
Understanding the Functional Roles of Multiple Extracellular Domains in Cell Adhesion Molecules with a Coarse-Grained Model.
J Mol Biol. 2017 Apr 7;429(7):1081-1095. doi: 10.1016/j.jmb.2017.02.013. Epub 2017 Feb 22.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
WITHDRAWN: Use of PSA-NCAM in Repair of the Central Nervous System.
Neurochem Res. 2008 Mar 13. doi: 10.1007/s11064-008-9635-7.
3
The allosteric role of the Ca2+ switch in adhesion and elasticity of C-cadherin.
Biophys J. 2008 Jun;94(12):4621-33. doi: 10.1529/biophysj.107.125591. Epub 2008 Mar 7.
4
NCAM-induced intracellular signaling revisited.
J Neurosci Res. 2008 Mar;86(4):727-43. doi: 10.1002/jnr.21551.
5
Immunoglobulin superfamily cell adhesion molecules: zippers and signals.
Curr Opin Cell Biol. 2007 Oct;19(5):543-50. doi: 10.1016/j.ceb.2007.09.010. Epub 2007 Oct 23.
6
Structure of a tyrosine phosphatase adhesive interaction reveals a spacer-clamp mechanism.
Science. 2007 Aug 31;317(5842):1217-20. doi: 10.1126/science.1144646.
7
Forced unfolding of proteins within cells.
Science. 2007 Aug 3;317(5838):663-6. doi: 10.1126/science.1139857.
8
Forces and bond dynamics in cell adhesion.
Science. 2007 May 25;316(5828):1148-53. doi: 10.1126/science.1137592.
9
Single-molecule experiments in vitro and in silico.
Science. 2007 May 25;316(5828):1144-8. doi: 10.1126/science.1137591.
10
Secondary and tertiary structure elasticity of titin Z1Z2 and a titin chain model.
Biophys J. 2007 Sep 1;93(5):1719-35. doi: 10.1529/biophysj.107.105528. Epub 2007 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验