Suppr超能文献

通过计算模拟对肿瘤坏死因子超家族配体的受体结合动力学进行系统测试。

A Systematic Test of Receptor Binding Kinetics for Ligands in Tumor Necrosis Factor Superfamily by Computational Simulations.

机构信息

Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.

出版信息

Int J Mol Sci. 2020 Mar 5;21(5):1778. doi: 10.3390/ijms21051778.

Abstract

Ligands in the tumor necrosis factor (TNF) superfamily are one major class of cytokines that bind to their corresponding receptors in the tumor necrosis factor receptor (TNFR) superfamily and initiate multiple intracellular signaling pathways during inflammation, tissue homeostasis, and cell differentiation. Mutations in the genes that encode TNF ligands or TNFR receptors result in a large variety of diseases. The development of therapeutic treatment for these diseases can be greatly benefitted from the knowledge on binding properties of these ligand-receptor interactions. In order to complement the limitations in the current experimental methods that measure the binding constants of TNF/TNFR interactions, we developed a new simulation strategy to computationally estimate the association and dissociation between a ligand and its receptor. We systematically tested this strategy to a comprehensive dataset that contained structures of diverse complexes between TNF ligands and their corresponding receptors in the TNFR superfamily. We demonstrated that the binding stabilities inferred from our simulation results were compatible with existing experimental data. We further compared the binding kinetics of different TNF/TNFR systems, and explored their potential functional implication. We suggest that the transient binding between ligands and cell surface receptors leads into a dynamic nature of cross-membrane signal transduction, whereas the slow but strong binding of these ligands to the soluble decoy receptors is naturally designed to fulfill their functions as inhibitors of signal activation. Therefore, our computational approach serves as a useful addition to current experimental techniques for the quantitatively comparison of interactions across different members in the TNF and TNFR superfamily. It also provides a mechanistic understanding to the functions of TNF-associated cell signaling pathways.

摘要

肿瘤坏死因子(TNF)超家族中的配体是一类主要的细胞因子,它们与肿瘤坏死因子受体(TNFR)超家族中的相应受体结合,并在炎症、组织稳态和细胞分化过程中启动多种细胞内信号通路。编码 TNF 配体或 TNFR 受体的基因突变导致多种疾病。这些疾病的治疗方法的发展可以从这些配体-受体相互作用的结合特性的知识中大大受益。为了弥补当前实验方法测量 TNF/TNFR 相互作用结合常数的局限性,我们开发了一种新的模拟策略,以计算配体与其受体之间的结合和解离。我们系统地测试了这种策略,该策略包含了 TNF 配体与其在 TNFR 超家族中的相应受体之间的多种复杂结构的综合数据集。我们证明了从我们的模拟结果推断出的结合稳定性与现有实验数据是兼容的。我们进一步比较了不同 TNF/TNFR 系统的结合动力学,并探讨了它们潜在的功能意义。我们认为,配体与细胞表面受体之间的瞬时结合导致跨膜信号转导的动态性质,而这些配体与可溶性诱饵受体的缓慢但强烈的结合是为了履行其作为信号激活抑制剂的功能而自然设计的。因此,我们的计算方法是对 TNF 和 TNFR 超家族中不同成员之间的相互作用进行定量比较的当前实验技术的有益补充。它还为 TNF 相关细胞信号通路的功能提供了一种机制理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/900d/7084274/c6f20fd08c73/ijms-21-01778-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验