Suppr超能文献

心肌肌球蛋白结合蛋白-C对粗肌丝的稳定性和抗弯刚度至关重要。

Cardiac myosin binding protein-C is essential for thick-filament stability and flexural rigidity.

作者信息

Nyland Lori R, Palmer Bradley M, Chen Zengyi, Maughan David W, Seidman Christine E, Seidman J G, Kreplak Laurent, Vigoreaux Jim O

机构信息

Department of Biology, University of Vermont, Burlington, Vermont 05405, USA.

出版信息

Biophys J. 2009 Apr 22;96(8):3273-80. doi: 10.1016/j.bpj.2008.12.3946.

Abstract

Using atomic force microscopy, we examined the contribution of cardiac myosin binding protein-C (cMyBP-C) to thick-filament length and flexural rigidity. Native thick filaments were isolated from the hearts of transgenic mice bearing a truncation mutation of cMyBP-C (t/t) that results in no detectable cMyBP-C and from age-matched wild-type controls (+/+). Atomic force microscopy images of these filaments were evaluated with an automated analysis algorithm that identified filament position and shape. The t/t thick-filament length (1.48 +/- 0.02 microm) was significantly (P < 0.01) shorter than +/+ (1.56 +/- 0.02 microm). This 5%-shorter thick-filament length in the t/t was reflected in 4% significantly shorter sarcomere lengths of relaxed isolated cardiomyocytes of the t/t (1.97 +/- 0.01 microm) compared to +/+ (2.05 +/- 0.01 microm). To determine if cMyBP-C contributes to the mechanical properties of thick filaments, we used statistical polymer chain mechanics to calculate a per-filament-specific persistence length, an index of flexural rigidity directly proportional to Young's modulus. Thick-filament-specific persistence length in the t/t (373 +/- 62 microm) was significantly lower than in +/+ (639 +/- 101 microm). Accordingly, Young's modulus of t/t thick filaments was approximately 60% of +/+. These results provide what we consider a new understanding for the critical role of cMyBP-C in defining normal cardiac output by sustaining force and muscle stiffness.

摘要

我们使用原子力显微镜检查了心肌肌球蛋白结合蛋白-C(cMyBP-C)对粗肌丝长度和弯曲刚度的影响。从携带cMyBP-C截短突变(t/t)的转基因小鼠心脏中分离出天然粗肌丝,该突变导致无法检测到cMyBP-C,并从年龄匹配的野生型对照(+/+)中分离出粗肌丝。使用自动分析算法评估这些肌丝的原子力显微镜图像,该算法可识别肌丝的位置和形状。t/t粗肌丝长度(1.48±0.02微米)明显(P<0.01)短于+/+(1.56±0.02微米)。t/t中粗肌丝长度缩短5%,这反映在t/t松弛分离的心肌细胞的肌节长度比+/+明显短4%(t/t为1.97±0.01微米,+/+为2.05±0.01微米)。为了确定cMyBP-C是否对粗肌丝的机械性能有贡献,我们使用统计聚合物链力学来计算每根肌丝特定的持久长度,这是一个与杨氏模量成正比的弯曲刚度指标。t/t中粗肌丝特定的持久长度(373±62微米)明显低于+/+(639±101微米)。因此,t/t粗肌丝的杨氏模量约为+/+的60%。这些结果为cMyBP-C通过维持力和肌肉刚度来定义正常心输出量的关键作用提供了我们认为的新认识。

相似文献

1
Cardiac myosin binding protein-C is essential for thick-filament stability and flexural rigidity.
Biophys J. 2009 Apr 22;96(8):3273-80. doi: 10.1016/j.bpj.2008.12.3946.
2
The cMyBP-C HCM variant L348P enhances thin filament activation through an increased shift in tropomyosin position.
J Mol Cell Cardiol. 2016 Feb;91:141-7. doi: 10.1016/j.yjmcc.2015.12.014. Epub 2015 Dec 21.
3
Ablation of cardiac myosin binding protein-C disrupts the super-relaxed state of myosin in murine cardiomyocytes.
J Mol Cell Cardiol. 2016 May;94:65-71. doi: 10.1016/j.yjmcc.2016.03.009. Epub 2016 Mar 26.
4
The structure of isolated cardiac Myosin thick filaments from cardiac Myosin binding protein-C knockout mice.
Biophys J. 2008 Mar 1;94(5):1707-18. doi: 10.1529/biophysj.107.115899. Epub 2007 Nov 9.
5
Mechanical unfolding of cardiac myosin binding protein-C by atomic force microscopy.
Biophys J. 2011 Oct 19;101(8):1968-77. doi: 10.1016/j.bpj.2011.08.030.
6
Cardiac myosin binding protein C phosphorylation is cardioprotective.
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16918-23. doi: 10.1073/pnas.0607069103. Epub 2006 Oct 30.
7
Phosphorylation of cardiac myosin binding protein C releases myosin heads from the surface of cardiac thick filaments.
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):E1355-E1364. doi: 10.1073/pnas.1614020114. Epub 2017 Feb 6.
8
Multiple forms of cardiac myosin-binding protein C exist and can regulate thick filament stability.
J Gen Physiol. 2007 May;129(5):419-28. doi: 10.1085/jgp.200609714.
9
Molecular mechanics of cardiac myosin-binding protein C in native thick filaments.
Science. 2012 Sep 7;337(6099):1215-8. doi: 10.1126/science.1223602. Epub 2012 Aug 23.
10
Myosin-binding protein C stabilizes, but is not the sole determinant of SRX myosin in cardiac muscle.
J Gen Physiol. 2023 Apr 3;155(4). doi: 10.1085/jgp.202213276. Epub 2023 Jan 23.

引用本文的文献

1
Design Principles and Benefits of Spatially Explicit Models of Myofilament Function.
Methods Mol Biol. 2024;2735:43-62. doi: 10.1007/978-1-0716-3527-8_4.
2
Geometric basis of action potential of skeletal muscle cells and neurons.
Open Life Sci. 2022 Sep 16;17(1):1191-1199. doi: 10.1515/biol-2022-0488. eCollection 2022.
3
Interacting-heads motif explains the X-ray diffraction pattern of relaxed vertebrate skeletal muscle.
Biophys J. 2022 Apr 19;121(8):1354-1366. doi: 10.1016/j.bpj.2022.03.023. Epub 2022 Mar 19.
4
Contiguity and Structural Impacts of a Non-Myosin Protein within the Thick Filament Myosin Layers.
Biology (Basel). 2021 Jul 2;10(7):613. doi: 10.3390/biology10070613.
5
Secondary Structure of the Novel Myosin Binding Domain WYR and Implications within Myosin Structure.
Biology (Basel). 2021 Jun 29;10(7):603. doi: 10.3390/biology10070603.
6
Cardiac myosin binding protein-C phosphorylation accelerates β-cardiac myosin detachment rate in mouse myocardium.
Am J Physiol Heart Circ Physiol. 2021 May 1;320(5):H1822-H1835. doi: 10.1152/ajpheart.00673.2020. Epub 2021 Mar 5.
7
A feline orthologue of the human MYH7 c.5647G>A (p.(Glu1883Lys)) variant causes hypertrophic cardiomyopathy in a Domestic Shorthair cat.
Eur J Hum Genet. 2019 Nov;27(11):1724-1730. doi: 10.1038/s41431-019-0431-4. Epub 2019 Jun 4.
9
Contractile apparatus dysfunction early in the pathophysiology of diabetic cardiomyopathy.
World J Diabetes. 2015 Jul 10;6(7):943-60. doi: 10.4239/wjd.v6.i7.943.
10
Kinetics of cardiac myosin isoforms in mouse myocardium are affected differently by presence of myosin binding protein-C.
J Muscle Res Cell Motil. 2014 Dec;35(5-6):267-78. doi: 10.1007/s10974-014-9390-0. Epub 2014 Oct 7.

本文引用的文献

1
Reduced cross-bridge dependent stiffness of skinned myocardium from mice lacking cardiac myosin binding protein-C.
Mol Cell Biochem. 2004 Aug;263(1):73-80. doi: 10.1023/B:MCBI.0000041849.60591.45.
2
Three-dimensional structure of vertebrate cardiac muscle myosin filaments.
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2386-90. doi: 10.1073/pnas.0708912105. Epub 2008 Feb 5.
3
The structure of isolated cardiac Myosin thick filaments from cardiac Myosin binding protein-C knockout mice.
Biophys J. 2008 Mar 1;94(5):1707-18. doi: 10.1529/biophysj.107.115899. Epub 2007 Nov 9.
5
Cardiac myosin-binding protein C is required for complete relaxation in intact myocytes.
Circ Res. 2007 Oct 26;101(9):928-38. doi: 10.1161/CIRCRESAHA.107.158774. Epub 2007 Sep 6.
6
Multiple forms of cardiac myosin-binding protein C exist and can regulate thick filament stability.
J Gen Physiol. 2007 May;129(5):419-28. doi: 10.1085/jgp.200609714.
7
Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking.
Biophys J. 2007 Jul 1;93(1):346-59. doi: 10.1529/biophysj.106.096966. Epub 2007 Apr 6.
8
Myosin binding protein-C: enigmatic regulator of cardiac contraction.
Int J Biochem Cell Biol. 2007;39(12):2161-6. doi: 10.1016/j.biocel.2006.12.008. Epub 2007 Jan 20.
9
Radial displacement of myosin cross-bridges in mouse myocardium due to ablation of myosin binding protein-C.
J Mol Biol. 2007 Mar 16;367(1):36-41. doi: 10.1016/j.jmb.2006.12.063. Epub 2006 Dec 28.
10
Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length.
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10248-10253. doi: 10.1073/pnas.0603931103. Epub 2006 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验