Mirza I Ahmad, Yachnin Brahm J, Wang Shaozhao, Grosse Stephan, Bergeron Hélène, Imura Akihiro, Iwaki Hiroaki, Hasegawa Yoshie, Lau Peter C K, Berghuis Albert M
Department of Biochemistry, McGill University, 3649 Prom Sir William Osler, Bellini Pavilion, Room 466, Montreal, QC, Canada H3G 0B1.
J Am Chem Soc. 2009 Jul 1;131(25):8848-54. doi: 10.1021/ja9010578.
Cyclohexanone monooxygenase (CHMO) is a flavoprotein that carries out the archetypical Baeyer-Villiger oxidation of a variety of cyclic ketones into lactones. Using NADPH and O(2) as cosubstrates, the enzyme inserts one atom of oxygen into the substrate in a complex catalytic mechanism that involves the formation of a flavin-peroxide and Criegee intermediate. We present here the atomic structures of CHMO from an environmental Rhodococcus strain bound with FAD and NADP(+) in two distinct states, to resolutions of 2.3 and 2.2 A. The two conformations reveal domain shifts around multiple linkers and loop movements, involving conserved arginine 329 and tryptophan 492, which effect a translation of the nicotinamide resulting in a sliding cofactor. Consequently, the cofactor is ideally situated and subsequently repositioned during the catalytic cycle to first reduce the flavin and later stabilize formation of the Criegee intermediate. Concurrent movements of a loop adjacent to the active site demonstrate how this protein can effect large changes in the size and shape of the substrate binding pocket to accommodate a diverse range of substrates. Finally, the previously identified BVMO signature sequence is highlighted for its role in coordinating domain movements. Taken together, these structures provide mechanistic insights into CHMO-catalyzed Baeyer-Villiger oxidation.
环己酮单加氧酶(CHMO)是一种黄素蛋白,可将多种环酮进行典型的拜耳 - 维利格氧化反应生成内酯。该酶以NADPH和O₂作为共底物,通过一种复杂的催化机制将一个氧原子插入底物中,该机制涉及黄素过氧化物和克里格中间体的形成。我们在此展示了来自环境红球菌菌株的CHMO与FAD和NADP⁺结合的两种不同状态的原子结构,分辨率分别为2.3 Å和2.2 Å。这两种构象揭示了围绕多个连接子的结构域移动和环的运动,涉及保守的精氨酸329和色氨酸492,它们导致烟酰胺的平移,从而产生辅因子滑动。因此,辅因子处于理想位置,并在催化循环中随后重新定位,首先还原黄素,然后稳定克里格中间体的形成。与活性位点相邻的一个环的同时运动表明该蛋白质如何能够使底物结合口袋的大小和形状发生大的变化,以容纳多种底物。最后,先前鉴定的BVMO特征序列因其在协调结构域运动中的作用而受到关注。综上所述,这些结构为CHMO催化的拜耳 - 维利格氧化反应提供了机制上的见解。