Suppr超能文献

结合底物的 Baeyer-Villiger 单加氧酶晶体结构呈现出 Criegee 样构象。

The substrate-bound crystal structure of a Baeyer-Villiger monooxygenase exhibits a Criegee-like conformation.

机构信息

Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Bellini Pavilion, Room 466, Montreal, QC, Canada H3G 0B1.

出版信息

J Am Chem Soc. 2012 May 9;134(18):7788-95. doi: 10.1021/ja211876p. Epub 2012 Apr 27.

Abstract

The Baeyer-Villiger monooxygenases (BVMOs) are a family of bacterial flavoproteins that catalyze the synthetically useful Baeyer-Villiger oxidation reaction. This involves the conversion of ketones into esters or cyclic ketones into lactones by introducing an oxygen atom adjacent to the carbonyl group. The BVMOs offer exquisite regio- and enantiospecificity while acting on a wide range of substrates. They use only NADPH and oxygen as cosubstrates, and produce only NADP(+) and water as byproducts, making them environmentally attractive for industrial purposes. Here, we report the first crystal structure of a BVMO, cyclohexanone monooxygenase (CHMO) from Rhodococcus sp. HI-31 in complex with its substrate, cyclohexanone, as well as NADP(+) and FAD, to 2.4 Å resolution. This structure shows a drastic rotation of the NADP(+) cofactor in comparison to previously reported NADP(+)-bound structures, as the nicotinamide moiety is no longer positioned above the flavin ring. Instead, the substrate, cyclohexanone, is found at this location, in an appropriate position for the formation of the Criegee intermediate. The rotation of NADP(+) permits the substrate to gain access to the reactive flavin peroxyanion intermediate while preventing it from diffusing out of the active site. The structure thus reveals the conformation of the enzyme during the key catalytic step. CHMO is proposed to undergo a series of conformational changes to gradually move the substrate from the solvent, via binding in a solvent excluded pocket that dictates the enzyme's chemospecificity, to a location above the flavin-peroxide adduct where catalysis occurs.

摘要

Baeyer-Villiger 单加氧酶(BVMOs)是一类细菌黄素蛋白,能够催化具有合成应用价值的 Baeyer-Villiger 氧化反应。该反应涉及将酮转化为酯或将环状酮转化为内酯,在这一过程中羰基邻位引入一个氧原子。BVMOs 在作用于广泛的底物时具有出色的区域和对映体选择性。它们仅使用 NADPH 和氧气作为辅助底物,并且仅产生 NADP(+)和水作为副产物,因此在工业用途方面具有环境吸引力。在这里,我们报告了第一个 BVMO(环己酮单加氧酶,CHMO)的晶体结构,它来自 Rhodococcus sp. HI-31,与底物环己酮、NADP(+)和 FAD 形成复合物,分辨率达到 2.4 Å。与之前报道的结合 NADP(+)的结构相比,该结构显示 NADP(+)辅助因子发生了剧烈的旋转,因为烟酰胺部分不再位于黄素环上方。相反,底物环己酮位于该位置,处于形成 Criegee 中间体的合适位置。NADP(+)的旋转允许底物进入反应性黄素过氧阴离子中间体,同时防止其从活性位点扩散出去。因此,该结构揭示了酶在关键催化步骤中的构象。CHMO 被提议经历一系列构象变化,逐渐将底物从溶剂中移动,通过结合在排除溶剂的口袋中,该口袋决定了酶的化学特异性,移动到位于黄素过氧化物加合物上方的位置,在此发生催化作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba89/3349289/1901be31f824/ja-2011-11876p_0005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验