Suppr超能文献

基于置信度机器对中医慢性萎缩性胃炎诊断的模糊预测

Hedged predictions for traditional Chinese chronic gastritis diagnosis with confidence machine.

作者信息

Wang Huazhen, Lin Chengde, Yang Fan, Hu Xueqin

机构信息

College of Computer Science and Technology, Huaqiao University, Xiamen 361005, PR China.

出版信息

Comput Biol Med. 2009 May;39(5):425-32. doi: 10.1016/j.compbiomed.2009.02.002. Epub 2009 Apr 21.

Abstract

Most classifiers output predictions for new instances without indicating how reliable they could be. Transductive confidence machine (TCM) is a novel framework that provides hedged prediction coupled with valid confidence. Many popular machine learning algorithms can be transformed into the framework of TCM, and therefore be used for producing hedged predictions. This paper incorporates random forest (RF) to propose a method named TCM-RF for classification of chronic gastritis data. Our method benefits from TCM-RF's high performance when features are noisy, highly correlated and of mixed types. The experimental results show that TCM-RF produces informative as well as effective predictions.

摘要

大多数分类器在输出新实例的预测结果时,并未表明其预测的可靠性。转导置信度机器(TCM)是一个新颖的框架,它能提供带有限定的预测并伴有有效的置信度。许多流行的机器学习算法都可以转化为TCM框架,进而用于生成带有限定的预测。本文将随机森林(RF)纳入其中,提出了一种名为TCM-RF的方法,用于慢性胃炎数据的分类。当特征存在噪声、高度相关且类型混合时,我们的方法得益于TCM-RF的高性能。实验结果表明,TCM-RF能产生信息丰富且有效的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验