Suppr超能文献

使用加权非线性最小二乘法和加速遗传算法估算活性污泥储存的动力学参数。

Estimating the kinetic parameters of activated sludge storage using weighted non-linear least-squares and accelerating genetic algorithm.

作者信息

Fang Fang, Ni Bing-Jie, Yu Han-Qing

机构信息

Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 China.

出版信息

Water Res. 2009 Jun;43(10):2595-604. doi: 10.1016/j.watres.2009.01.002. Epub 2009 Jan 18.

Abstract

In this study, weighted non-linear least-squares analysis and accelerating genetic algorithm are integrated to estimate the kinetic parameters of substrate consumption and storage product formation of activated sludge. A storage product formation equation is developed and used to construct the objective function for the determination of its production kinetics. The weighted least-squares analysis is employed to calculate the differences in the storage product concentration between the model predictions and the experimental data as the sum of squared weighted errors. The kinetic parameters for the substrate consumption and the storage product formation are estimated to be the maximum heterotrophic growth rate of 0.121/h, the yield coefficient of 0.44 mg CODX/mg CODS (COD, chemical oxygen demand) and the substrate half saturation constant of 16.9 mg/L, respectively, by minimizing the objective function using a real-coding-based accelerating genetic algorithm. Also, the fraction of substrate electrons diverted to the storage product formation is estimated to be 0.43 mg CODSTO/mg CODS. The validity of our approach is confirmed by the results of independent tests and the kinetic parameter values reported in literature, suggesting that this approach could be useful to evaluate the product formation kinetics of mixed cultures like activated sludge. More importantly, as this integrated approach could estimate the kinetic parameters rapidly and accurately, it could be applied to other biological processes.

摘要

在本研究中,将加权非线性最小二乘法分析与加速遗传算法相结合,以估算活性污泥中底物消耗和储存产物形成的动力学参数。建立了一个储存产物形成方程,并用于构建确定其生产动力学的目标函数。采用加权最小二乘法分析来计算模型预测值与实验数据之间储存产物浓度的差异,作为加权误差平方和。通过使用基于实数编码的加速遗传算法最小化目标函数,估算出底物消耗和储存产物形成的动力学参数分别为最大异养生长速率0.121/h、产率系数0.44 mg CODX/mg CODS(COD,化学需氧量)和底物半饱和常数16.9 mg/L。此外,转移到储存产物形成的底物电子分数估计为0.43 mg CODSTO/mg CODS。独立测试结果和文献报道的动力学参数值证实了我们方法的有效性,表明该方法可用于评估活性污泥等混合培养物的产物形成动力学。更重要的是,由于这种综合方法能够快速准确地估算动力学参数,它可应用于其他生物过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验