Suppr超能文献

高通量参数估计和不确定性分析应用于从合成木质纤维素水解产物生产真菌蛋白。

High throughput parameter estimation and uncertainty analysis applied to the production of mycoprotein from synthetic lignocellulosic hydrolysates.

作者信息

Banks Mason, Taylor Mark, Guo Miao

机构信息

Department of Engineering, Faculty of Natural Mathematical & Engineering Sciences, King's College London, Strand, London, WC2R 2LS, United Kingdom.

Fermentation Lead, Marlow Ingredients, Nelson Ave, Billingham, North Yorkshire, TS23 4HA, United Kingdom.

出版信息

Curr Res Food Sci. 2024 Oct 28;9:100908. doi: 10.1016/j.crfs.2024.100908. eCollection 2024.

Abstract

The current global food system produces substantial waste and carbon emissions while exacerbating the effects of global hunger and protein deficiency. This study aims to address these challenges by exploring the use of lignocellulosic agricultural residues as feedstocks for microbial protein fermentation, focusing on A3/5, a mycelial strain known for its high protein yield and nutritional quality. We propose a high throughput microlitre batch fermentation system paired with analytical chemistry to generate time series data of microbial growth and substrate utilisation. An unstructured biokinetic model was developed using a bootstrap sampling approach to quantify uncertainty in the parameter estimates. The model was validated against an independent data set of a different glucose-xylose composition to assess the predictive performance. Our results indicate a robust model fit with high coefficients of determination and low root mean squared errors for biomass, glucose, and xylose concentrations. Estimated parameter values provided insights into the resource utilisation strategies of A3/5 in mixed substrate cultures, aligning well with previous research findings. Significant correlations between estimated parameters were observed, highlighting challenges in parameter identifiability. The high throughput workflow presents a novel, rapid methodology for biokinetic model development, enabling efficient exploration of microbial growth dynamics and substrate utilisation. This innovative method directly supports the development of a foundational model for optimising microbial protein production from lignocellulosic hydrolysates, contributing to a more sustainable global food system.

摘要

当前的全球粮食系统产生了大量浪费和碳排放,同时加剧了全球饥饿和蛋白质缺乏的影响。本研究旨在通过探索利用木质纤维素农业残留物作为微生物蛋白发酵的原料来应对这些挑战,重点关注A3/5,这是一种以高蛋白产量和营养品质而闻名的菌丝体菌株。我们提出了一种高通量微升批次发酵系统,并结合分析化学方法,以生成微生物生长和底物利用的时间序列数据。使用自助抽样方法开发了一个非结构化生物动力学模型,以量化参数估计中的不确定性。该模型针对不同葡萄糖-木糖组成的独立数据集进行了验证,以评估其预测性能。我们的结果表明,该模型拟合良好,生物量、葡萄糖和木糖浓度的决定系数高,均方根误差低。估计的参数值为A3/5在混合底物培养中的资源利用策略提供了见解,与先前的研究结果高度一致。观察到估计参数之间存在显著相关性,突出了参数可识别性方面的挑战。高通量工作流程为生物动力学模型开发提供了一种新颖、快速的方法,能够有效地探索微生物生长动态和底物利用情况。这种创新方法直接支持开发用于优化木质纤维素水解产物微生物蛋白生产的基础模型,有助于建立更可持续的全球粮食系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dd5/11565039/31a6b4456100/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验