Suppr超能文献

11-顺式视黄醇对视锥视蛋白和完整视锥光感受器的作用。

The action of 11-cis-retinol on cone opsins and intact cone photoreceptors.

作者信息

Ala-Laurila Petri, Cornwall M Carter, Crouch Rosalie K, Kono Masahiro

机构信息

From the Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118; Department of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland.

From the Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118.

出版信息

J Biol Chem. 2009 Jun 12;284(24):16492-16500. doi: 10.1074/jbc.M109.004697. Epub 2009 Apr 22.

Abstract

11-cis-retinol has previously been shown in physiological experiments to promote dark adaptation and recovery of photoresponsiveness of bleached salamander red cones but not of bleached salamander red rods. The purpose of this study was to evaluate the direct interaction of 11-cis-retinol with expressed human and salamander cone opsins, and to determine by microspectrophotometry pigment formation in isolated salamander photoreceptors. We show here in a cell-free system using incorporation of radioactive guanosine 5'-3-O-(thio)triphosphate into transducin as an index of activity, that 11-cis-retinol inactivates expressed salamander cone opsins, acting an inverse agonist. Similar results were obtained with expressed human red and green opsins. 11-cis-retinol had no significant effect on the activity of human blue cone opsin. In contrast, 11-cis-retinol activates the expressed salamander and human red rod opsins, acting as an agonist. Using microspectrophotometry of salamander cone photoreceptors before and after bleaching and following subsequent treatment with 11-cis-retinol, we show that 11-cis-retinol promotes pigment formation. Pigment was not formed in salamander red rods or green rods (containing the same opsin as blue cones) treated under the same conditions. These results demonstrate that 11-cis-retinol is not a useful substrate for rod photoreceptors although it is for cone photoreceptors. These data support the premise that rods and cones have mechanisms for handling retinoids and regenerating visual pigment that are specific to photoreceptor type. These mechanisms are critical to providing regenerated pigments in a time scale required for the function of these two types of photoreceptors.

摘要

11-顺式视黄醇先前在生理学实验中已表明可促进蝾螈红色视锥细胞漂白后的暗适应及光反应性恢复,但对蝾螈红色视杆细胞漂白后则无此作用。本研究的目的是评估11-顺式视黄醇与表达的人类及蝾螈视锥蛋白的直接相互作用,并通过显微分光光度法测定分离出的蝾螈光感受器中的色素形成。我们在此无细胞系统中表明,以放射性鸟苷5'-3-O-(硫代)三磷酸掺入转导蛋白作为活性指标,11-顺式视黄醇可使表达的蝾螈视锥蛋白失活,起反向激动剂的作用。对表达的人类红色和绿色视蛋白也获得了类似结果。11-顺式视黄醇对人类蓝色视锥蛋白的活性无显著影响。相反,11-顺式视黄醇可激活表达的蝾螈及人类红色视杆蛋白,起激动剂的作用。通过对蝾螈视锥光感受器漂白前后及随后用11-顺式视黄醇处理后的显微分光光度法检测,我们发现11-顺式视黄醇可促进色素形成。在相同条件下处理的蝾螈红色视杆细胞或绿色视杆细胞(含有与蓝色视锥相同的视蛋白)中未形成色素。这些结果表明,11-顺式视黄醇虽对视锥光感受器是有用的底物,但对视杆光感受器并非如此。这些数据支持这样的前提,即视杆细胞和视锥细胞具有处理类视黄醇及再生视色素的机制,这些机制是光感受器类型特异性的。这些机制对于在这两种类型光感受器功能所需的时间范围内提供再生色素至关重要。

相似文献

1
The action of 11-cis-retinol on cone opsins and intact cone photoreceptors.
J Biol Chem. 2009 Jun 12;284(24):16492-16500. doi: 10.1074/jbc.M109.004697. Epub 2009 Apr 22.
2
cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration.
J Physiol. 2016 Nov 15;594(22):6753-6765. doi: 10.1113/JP272831. Epub 2016 Aug 2.
3
Differences in the pharmacological activation of visual opsins.
Vis Neurosci. 2006 Nov-Dec;23(6):899-908. doi: 10.1017/S0952523806230256.
5
The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones.
Vis Neurosci. 2017 Jan;34:E004. doi: 10.1017/S0952523817000013.
7
A visual pigment expressed in both rod and cone photoreceptors.
Neuron. 2001 Nov 8;32(3):451-61. doi: 10.1016/s0896-6273(01)00482-2.
8
Visual cycle: Dependence of retinol production and removal on photoproduct decay and cell morphology.
J Gen Physiol. 2006 Aug;128(2):153-69. doi: 10.1085/jgp.200609557. Epub 2006 Jul 17.
9
Rods are rods and cones cones, and (never) the twain shall meet.
Neuron. 2001 Nov 8;32(3):375-6. doi: 10.1016/s0896-6273(01)00492-5.

引用本文的文献

1
Retinoid dynamics in vision: from visual cycle biology to retina disease treatments.
Pharmacol Ther. 2025 Jun 21;273:108902. doi: 10.1016/j.pharmthera.2025.108902.
2
Chromophore supply modulates cone function and survival in retinitis pigmentosa mouse models.
Proc Natl Acad Sci U S A. 2023 Jun 6;120(23):e2217885120. doi: 10.1073/pnas.2217885120. Epub 2023 May 30.
3
Pathways and disease-causing alterations in visual chromophore production for vertebrate vision.
J Biol Chem. 2021 Jan-Jun;296:100072. doi: 10.1074/jbc.REV120.014405. Epub 2020 Nov 23.
4
Rods progressively escape saturation to drive visual responses in daylight conditions.
Nat Commun. 2017 Nov 27;8(1):1813. doi: 10.1038/s41467-017-01816-6.
5
The role of retinol dehydrogenase 10 in the cone visual cycle.
Sci Rep. 2017 May 24;7(1):2390. doi: 10.1038/s41598-017-02549-8.
6
The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones.
Vis Neurosci. 2017 Jan;34:E004. doi: 10.1017/S0952523817000013.
7
cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration.
J Physiol. 2016 Nov 15;594(22):6753-6765. doi: 10.1113/JP272831. Epub 2016 Aug 2.
8
Retinal Attachment Instability Is Diversified among Mammalian Melanopsins.
J Biol Chem. 2015 Nov 6;290(45):27176-27187. doi: 10.1074/jbc.M115.666305. Epub 2015 Sep 28.
9
Retinol dehydrogenase 8 and ATP-binding cassette transporter 4 modulate dark adaptation of M-cones in mammalian retina.
J Physiol. 2015 Nov 15;593(22):4923-41. doi: 10.1113/JP271285. Epub 2015 Oct 18.
10
Dephosphorylation during bleach and regeneration of visual pigment in carp rod and cone membranes.
J Biol Chem. 2015 Oct 2;290(40):24381-90. doi: 10.1074/jbc.M115.674101. Epub 2015 Aug 18.

本文引用的文献

1
Highly efficient retinal metabolism in cones.
Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16051-6. doi: 10.1073/pnas.0806593105. Epub 2008 Oct 3.
2
11-cis- and all-trans-retinols can activate rod opsin: rational design of the visual cycle.
Biochemistry. 2008 Jul 15;47(28):7567-71. doi: 10.1021/bi800357b. Epub 2008 Jun 19.
4
Rpe65-/- and Lrat-/- mice: comparable models of leber congenital amaurosis.
Invest Ophthalmol Vis Sci. 2008 Jun;49(6):2384-9. doi: 10.1167/iovs.08-1727. Epub 2008 Feb 22.
5
Chromophore switch from 11-cis-dehydroretinal (A2) to 11-cis-retinal (A1) decreases dark noise in salamander red rods.
J Physiol. 2007 Nov 15;585(Pt 1):57-74. doi: 10.1113/jphysiol.2007.142935. Epub 2007 Sep 20.
6
A novel cone visual cycle in the cone-dominated retina.
Exp Eye Res. 2007 Aug;85(2):175-84. doi: 10.1016/j.exer.2007.05.003. Epub 2007 May 24.
7
Differences in the pharmacological activation of visual opsins.
Vis Neurosci. 2006 Nov-Dec;23(6):899-908. doi: 10.1017/S0952523806230256.
8
Turning cones off: the role of the 9-methyl group of retinal in red cones.
J Gen Physiol. 2006 Dec;128(6):671-85. doi: 10.1085/jgp.200609630. Epub 2006 Nov 13.
9
Rod/cone rivalry in pigment regeneration.
J Physiol. 1968 Sep;198(1):219-36. doi: 10.1113/jphysiol.1968.sp008603.
10
Visual cycle: Dependence of retinol production and removal on photoproduct decay and cell morphology.
J Gen Physiol. 2006 Aug;128(2):153-69. doi: 10.1085/jgp.200609557. Epub 2006 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验