Childs Lois C, Enelow Robert, Simonsen Lone, Heintzelman Norris H, Kowalski Kimberly M, Taylor Robert J
Lockheed Martin, Inc., Valley Forge, Philadelphia, PA, USA.
J Am Med Inform Assoc. 2009 Jul-Aug;16(4):571-5. doi: 10.1197/jamia.M3083. Epub 2009 Apr 23.
The Obesity Challenge, sponsored by Informatics for Integrating Biology and the Bedside (i2b2), a National Center for Biomedical Computing, asked participants to build software systems that could "read" a patient's clinical discharge summary and replicate the judgments of physicians in evaluating presence or absence of obesity and 15 comorbidities. The authors describe their methodology and discuss the results of applying Lockheed Martin's rule-based natural language processing (NLP) capability, ClinREAD. We tailored ClinREAD with medical domain expertise to create assigned default judgments based on the most probable results as defined in the ground truth. It then used rules to collect evidence similar to the evidence that the human judges likely relied upon, and applied a logic module to weigh the strength of all evidence collected to arrive at final judgments. The Challenge results suggest that rule-based systems guided by human medical expertise are capable of solving complex problems in machine processing of medical text.
由国家生物医学计算中心“整合生物学与床边信息学”(i2b2)发起的“肥胖挑战”项目,要求参与者构建软件系统,该系统能够“读取”患者的临床出院小结,并在评估患者是否患有肥胖症及15种合并症时,复制医生的判断。作者描述了他们的方法,并讨论了应用洛克希德·马丁公司基于规则的自然语言处理(NLP)能力ClinREAD的结果。我们利用医学领域专业知识对ClinREAD进行了定制,以便根据基本事实中定义的最可能结果创建指定的默认判断。然后,它使用规则收集类似于人类评判员可能依赖的证据,并应用一个逻辑模块来权衡所收集的所有证据的力度,从而得出最终判断。挑战结果表明,在人类医学专业知识指导下的基于规则的系统,有能力解决医学文本机器处理中的复杂问题。