Suppr超能文献

用于评估临床状况的自然语言处理框架。

Natural language processing framework to assess clinical conditions.

作者信息

Ware Henry, Mullett Charles J, Jagannathan V

机构信息

Medquist, Inc, Morgantown, WV, USA.

出版信息

J Am Med Inform Assoc. 2009 Jul-Aug;16(4):585-9. doi: 10.1197/jamia.M3091. Epub 2009 Apr 23.

Abstract

OBJECTIVE The authors developed a natural language processing (NLP) framework that could be used to extract clinical findings and diagnoses from dictated physician documentation. DESIGN De-identified documentation was made available by i2b2 Bio-informatics research group as a part of their NLP challenge focusing on obesity and its co-morbidities. The authors describe their approach, which used a combination of concept detection, context validation, and the application of a variety of rules to conclude patient diagnoses. RESULTS The framework was successful at correctly identifying diagnoses as judged by NLP challenge organizers when compared with a gold standard of physician annotations. The authors overall kappa values for agreement with the gold standard were 0.92 for explicit textual results and 0.91 for intuited results. The NLP framework compared favorably with those of the other entrants, placing third in textual results and fourth in intuited results in the i2b2 competition. CONCLUSIONS The framework and approach used to detect clinical conditions was reasonably successful at extracting 16 diagnoses related to obesity. The system and methodology merits further development, targeting clinically useful applications.

摘要

目的 作者开发了一种自然语言处理(NLP)框架,可用于从医生口述文档中提取临床发现和诊断信息。

设计 去识别化文档由i2b2生物信息学研究小组提供,作为其聚焦肥胖及其合并症的NLP挑战的一部分。作者描述了他们的方法,该方法结合了概念检测、上下文验证以及应用各种规则来得出患者诊断结果。

结果 与医生注释的金标准相比,经NLP挑战组织者判断,该框架在正确识别诊断方面取得了成功。作者与金标准的总体kappa值,明确文本结果为0.92,直观结果为0.91。在i2b2竞赛中,该NLP框架与其他参赛者的框架相比表现良好,在文本结果中排名第三,在直观结果中排名第四。

结论 用于检测临床状况的框架和方法在提取16种与肥胖相关的诊断方面相当成功。该系统和方法值得进一步开发,以针对临床有用的应用。

相似文献

1
Natural language processing framework to assess clinical conditions.用于评估临床状况的自然语言处理框架。
J Am Med Inform Assoc. 2009 Jul-Aug;16(4):585-9. doi: 10.1197/jamia.M3091. Epub 2009 Apr 23.
8
Recognizing obesity and comorbidities in sparse data.在稀疏数据中识别肥胖及合并症。
J Am Med Inform Assoc. 2009 Jul-Aug;16(4):561-70. doi: 10.1197/jamia.M3115. Epub 2009 Apr 23.

引用本文的文献

4
Natural Language Processing for EHR-Based Computational Phenotyping.基于电子健康记录的自然语言处理计算表型。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):139-153. doi: 10.1109/TCBB.2018.2849968. Epub 2018 Jun 25.
9
A study of actions in operative notes.手术记录中的操作研究。
AMIA Annu Symp Proc. 2012;2012:1431-40. Epub 2012 Nov 3.

本文引用的文献

2
Identifying patient smoking status from medical discharge records.从医疗出院记录中识别患者的吸烟状况。
J Am Med Inform Assoc. 2008 Jan-Feb;15(1):14-24. doi: 10.1197/jamia.M2408. Epub 2007 Oct 18.
3
Identifying smokers with a medical extraction system.使用医学提取系统识别吸烟者。
J Am Med Inform Assoc. 2008 Jan-Feb;15(1):36-9. doi: 10.1197/jamia.M2442. Epub 2007 Oct 18.
4
Evaluating the state-of-the-art in automatic de-identification.评估自动去识别技术的最新进展。
J Am Med Inform Assoc. 2007 Sep-Oct;14(5):550-63. doi: 10.1197/jamia.M2444. Epub 2007 Jun 28.
7
Automated encoding of clinical documents based on natural language processing.基于自然语言处理的临床文档自动编码
J Am Med Inform Assoc. 2004 Sep-Oct;11(5):392-402. doi: 10.1197/jamia.M1552. Epub 2004 Jun 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验