Department of AI and Informatics, Mayo Clinic, Rochester, MN 55902, United States.
Center for Translational AI Excellence and Applications in Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, United States.
J Am Med Inform Assoc. 2024 Jun 20;31(7):1493-1502. doi: 10.1093/jamia/ocae101.
Error analysis plays a crucial role in clinical concept extraction, a fundamental subtask within clinical natural language processing (NLP). The process typically involves a manual review of error types, such as contextual and linguistic factors contributing to their occurrence, and the identification of underlying causes to refine the NLP model and improve its performance. Conducting error analysis can be complex, requiring a combination of NLP expertise and domain-specific knowledge. Due to the high heterogeneity of electronic health record (EHR) settings across different institutions, challenges may arise when attempting to standardize and reproduce the error analysis process.
This study aims to facilitate a collaborative effort to establish common definitions and taxonomies for capturing diverse error types, fostering community consensus on error analysis for clinical concept extraction tasks.
We iteratively developed and evaluated an error taxonomy based on existing literature, standards, real-world data, multisite case evaluations, and community feedback. The finalized taxonomy was released in both .dtd and .owl formats at the Open Health Natural Language Processing Consortium. The taxonomy is compatible with several different open-source annotation tools, including MAE, Brat, and MedTator.
The resulting error taxonomy comprises 43 distinct error classes, organized into 6 error dimensions and 4 properties, including model type (symbolic and statistical machine learning), evaluation subject (model and human), evaluation level (patient, document, sentence, and concept), and annotation examples. Internal and external evaluations revealed strong variations in error types across methodological approaches, tasks, and EHR settings. Key points emerged from community feedback, including the need to enhancing clarity, generalizability, and usability of the taxonomy, along with dissemination strategies.
The proposed taxonomy can facilitate the acceleration and standardization of the error analysis process in multi-site settings, thus improving the provenance, interpretability, and portability of NLP models. Future researchers could explore the potential direction of developing automated or semi-automated methods to assist in the classification and standardization of error analysis.
错误分析在临床概念提取中起着至关重要的作用,这是临床自然语言处理(NLP)的基本子任务。该过程通常涉及手动审查错误类型,例如导致错误发生的上下文和语言因素,并确定根本原因,以改进 NLP 模型并提高其性能。进行错误分析可能很复杂,需要结合 NLP 专业知识和领域特定知识。由于不同机构的电子健康记录(EHR)设置具有高度的异质性,因此在尝试标准化和复制错误分析过程时可能会遇到挑战。
本研究旨在促进建立共同定义和分类法的协作努力,以捕获各种错误类型,并就临床概念提取任务的错误分析达成社区共识。
我们基于现有文献、标准、真实数据、多站点案例评估和社区反馈,迭代开发和评估了一个错误分类法。最终的分类法以.dtd 和.owl 格式发布在开放健康自然语言处理联盟中。该分类法与多个不同的开源注释工具兼容,包括 MAE、Brat 和 MedTator。
所得到的错误分类法由 43 个不同的错误类别组成,分为 6 个错误维度和 4 个属性,包括模型类型(符号和统计机器学习)、评估主体(模型和人类)、评估级别(患者、文档、句子和概念)和注释示例。内部和外部评估显示,不同方法、任务和 EHR 设置之间的错误类型存在很大差异。社区反馈的要点包括需要提高分类法的清晰度、通用性和可用性,以及传播策略。
所提出的分类法可以促进多站点设置中的错误分析过程的加速和标准化,从而提高 NLP 模型的出处、可解释性和可移植性。未来的研究人员可以探索开发自动化或半自动化方法来协助错误分析的分类和标准化的潜在方向。