Suppr超能文献

几何阻挫:四维硬球的研究

Geometrical frustration: a study of four-dimensional hard spheres.

作者信息

van Meel J A, Frenkel D, Charbonneau P

机构信息

FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):030201. doi: 10.1103/PhysRevE.79.030201. Epub 2009 Mar 3.

Abstract

The smallest maximum-kissing-number Voronoi polyhedron of three-dimensional (3D) Euclidean spheres is the icosahedron, and the tetrahedron is the smallest volume that can show up in Delaunay tessellation. No periodic lattice is consistent with either, and hence these dense packings are geometrically frustrated. Because icosahedra can be assembled from almost perfect tetrahedra, the terms "icosahedral" and "polytetrahedral" packing are often used interchangeably, which leaves the true origin of geometric frustration unclear. Here we report a computational study of freezing of 4D Euclidean hard spheres, where the densest Voronoi cluster is compatible with the symmetry of the densest crystal, while polytetrahedral order is not. We observe that, under otherwise comparable conditions, crystal nucleation in four dimensions is less facile than in three dimensions, which is consistent with earlier observations [M. Skoge, Phys. Rev. E 74, 041127 (2006)]. We conclude that it is the geometrical frustration of polytetrahedral structures that inhibits crystallization.

摘要

三维(3D)欧几里得空间中球体的最大亲吻数最小的Voronoi多面体是二十面体,而四面体是在Delaunay三角剖分中可能出现的最小体积。没有任何周期性晶格与这两者一致,因此这些密集堆积在几何上是受挫的。由于二十面体可以由几乎完美的四面体组装而成,“二十面体”和“多四面体”堆积这两个术语经常互换使用,这使得几何受挫的真正起源变得不清楚。在这里,我们报告了一项关于四维欧几里得硬球冻结的计算研究,其中最密集的Voronoi簇与最密集晶体的对称性兼容,而多四面体有序则不兼容。我们观察到,在其他条件相当的情况下,四维中的晶体成核比三维中更不容易,这与早期的观察结果一致[M. Skoge,《物理评论E》74,041127(2006)]。我们得出结论,是多四面体结构的几何受挫抑制了结晶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验