文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于表面的面部扫描配准在神经导航手术中的应用:一项临床研究。

Surface-based facial scan registration in neuronavigation procedures: a clinical study.

机构信息

School of Engineering and Computer Science, Hebrew University, Givat Ram Campus, Jerusalem, Israel 91904.

出版信息

J Neurosurg. 2009 Dec;111(6):1201-6. doi: 10.3171/2009.3.JNS081457.


DOI:10.3171/2009.3.JNS081457
PMID:19392604
Abstract

OBJECT: Surface-based registration (SBR) with facial surface scans has been proposed as an alternative for the commonly used fiducial-based registration in image-guided neurosurgery. Recent studies comparing the accuracy of SBR and fiducial-based registration have been based on a few targets located on the head surface rather than inside the brain and have yielded contradictory conclusions. Moreover, no visual feedback is provided with either method to inform the surgeon about the estimated target registration error (TRE) at various target locations. The goals in the present study were: 1) to quantify the SBR error in a clinical setup, 2) to estimate the targeting error for many target locations inside the brain, and 3) to create a map of the estimated TRE values superimposed on a patient's head image. METHODS: The authors randomly selected 12 patients (8 supine and 4 in a lateral position) who underwent neurosurgery with a commercial navigation system. Intraoperatively, scans of the patients' faces were acquired using a fast 3D surface scanner and aligned with their preoperative MR or CT head image. In the laboratory, the SBR accuracy was measured on the facial zone and estimated at various intracranial target locations. Contours related to different TREs were superimposed on the patient's head image and informed the surgeon about the expected anisotropic error distribution. RESULTS: The mean surface registration error in the face zone was 0.9 +/- 0.35 mm. The mean estimated TREs for targets located 60, 105, and 150 mm from the facial surface were 2.0, 3.2, and 4.5 mm, respectively. There was no difference in the estimated TRE between the lateral and supine positions. The entire registration procedure, including positioning of the scanner, surface data acquisition, and the registration computation usually required < 5 minutes. CONCLUSIONS: Surface-based registration accuracy is better in the face and frontal zones, and error increases as the target location lies further from the face. Visualization of the anisotropic TRE distribution may help the surgeon to make clinical decisions. The observed and estimated accuracies and the intraoperative registration time show that SBR using the fast surface scanner is practical and feasible in a clinical setup.

摘要

目的:与基于基准点的配准相比,基于表面的配准(SBR)利用面部表面扫描已被提议作为图像引导神经外科中常用的基准点配准的替代方法。最近比较 SBR 和基于基准点的配准准确性的研究基于头部表面上的几个而不是大脑内的目标,并且得出了相互矛盾的结论。此外,两种方法都没有提供视觉反馈来告知外科医生在各种目标位置的估计目标配准误差(TRE)。本研究的目的是:1)量化临床设置中的 SBR 误差,2)估计大脑内许多目标位置的靶向误差,3)创建叠加在患者头部图像上的估计 TRE 值的地图。

方法:作者随机选择了 12 名接受商业导航系统神经外科手术的患者(8 名仰卧位和 4 名侧卧位)。术中,使用快速 3D 表面扫描仪采集患者面部的扫描,并与术前 MR 或 CT 头部图像对齐。在实验室中,在面部区域测量 SBR 精度,并在各种颅内目标位置进行估计。与不同 TRE 相关的轮廓叠加在患者的头部图像上,告知外科医生预期的各向异性误差分布。

结果:面部区域的平均表面配准误差为 0.9 +/- 0.35 毫米。位于距面部表面 60、105 和 150 毫米的目标的平均估计 TRE 分别为 2.0、3.2 和 4.5 毫米。侧卧和仰卧位的估计 TRE 没有差异。整个注册过程,包括扫描仪的定位、表面数据采集和注册计算,通常需要 < 5 分钟。

结论:基于表面的配准精度在面部和额部区域更好,随着目标位置远离面部,误差增加。各向异性 TRE 分布的可视化可能有助于外科医生做出临床决策。观察到的和估计的准确性以及术中注册时间表明,使用快速表面扫描仪的 SBR 在临床环境中是实用且可行的。

相似文献

[1]
Surface-based facial scan registration in neuronavigation procedures: a clinical study.

J Neurosurg. 2009-12

[2]
A new markerless patient-to-image registration method using a portable 3D scanner.

Med Phys. 2014-10

[3]
Intraoperative fiducial-less patient registration using volumetric 3D ultrasound: a prospective series of 32 neurosurgical cases.

J Neurosurg. 2015-9

[4]
Assessment of an image-guided neurosurgery system using a head phantom.

Br J Neurosurg. 2016-12

[5]
Fiducial optimization for minimal target registration error in image-guided neurosurgery.

IEEE Trans Med Imaging. 2011-12-6

[6]
Properties of the target registration error for surface matching in neuronavigation.

Comput Aided Surg. 2011

[7]
Guidelines for the placement of fiducial points in image-guided neurosurgery.

Int J Med Robot. 2010-6

[8]
Application accuracy in frameless image-guided neurosurgery: a comparison study of three patient-to-image registration methods.

J Neurosurg. 2007-6

[9]
Anatomical landmarks for point-matching registration in image-guided neurosurgery.

Int J Med Robot. 2013-6-3

[10]
Intraoperative image updating for brain shift following dural opening.

J Neurosurg. 2016-9-9

引用本文的文献

[1]
Advantages of computed tomography-based navigation in clipping distal anterior cerebral artery aneurysms: a retrospective cohort study.

Quant Imaging Med Surg. 2023-12-1

[2]
Image-to-Patient Registration in Computer-Assisted Surgery of Head and Neck: State-of-the-Art, Perspectives, and Challenges.

J Clin Med. 2023-8-19

[3]
Validation of a novel method for canine eruption assessment in unilateral cleft lip and palate patients.

Clin Exp Dent Res. 2021-6

[4]
Using non-invasive neuroimaging to enhance the care, well-being and experimental outcomes of laboratory non-human primates (monkeys).

Neuroimage. 2021-3

[5]
Current accuracy of surface matching compared to adhesive markers in patient-to-image registration.

Acta Neurochir (Wien). 2019-3-16

[6]
An automatic markerless registration method for neurosurgical robotics based on an optical camera.

Int J Comput Assist Radiol Surg. 2017-11-3

[7]
Intraoperative navigation in complex head and neck resections: indications and limits.

Int J Comput Assist Radiol Surg. 2017-5

[8]
Automatic deformable surface registration for medical applications by radial basis function-based robust point-matching.

Comput Biol Med. 2016-10-1

[9]
Multimodal navigated skull base tumor resection using image-based vascular and cranial nerve segmentation: A prospective pilot study.

Surg Neurol Int. 2015-11-19

[10]
Near Real-Time Computer Assisted Surgery for Brain Shift Correction Using Biomechanical Models.

IEEE J Transl Eng Health Med. 2014-4-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索