Jang Yoonhee, Wixted John T, Huber David E
Department of Psychology, University of California, San Diego, La Jolla, CA 92093-0109, USA.
J Exp Psychol Gen. 2009 May;138(2):291-306. doi: 10.1037/a0015525.
The current study compared 3 models of recognition memory in their ability to generalize across yes/no and 2-alternative forced-choice (2AFC) testing. The unequal-variance signal-detection model assumes a continuous memory strength process. The dual-process signal-detection model adds a thresholdlike recollection process to a continuous familiarity process. The mixture signal-detection model assumes a continuous memory strength process, but the old item distribution consists of a mixture of 2 distributions with different means. Prior efforts comparing the ability of the models to characterize data from both test formats did not consider the role of parameter reliability, which can be critical when comparing models that differ in flexibility. Parametric bootstrap simulations revealed that parameter regressions based on separate fits of each test type only served to identify the least flexible model. However, simultaneous fits of receiver-operating characteristic data from both test types with goodness-of-fit adjusted with Akaike's information criterion (AIC) successfully recovered the true model that generated the data. With AIC and simultaneous fits to real data, the unequal-variance signal-detection model was found to provide the best account across yes/no and 2AFC testing.
当前的研究比较了3种识别记忆模型在是/否测试和二选一强制选择(2AFC)测试中的泛化能力。异方差信号检测模型假定存在一个连续的记忆强度过程。双过程信号检测模型在连续的熟悉度过程中增加了一个类似阈值的回忆过程。混合信号检测模型假定存在一个连续的记忆强度过程,但旧项目分布由两个均值不同的分布混合而成。先前比较这些模型刻画两种测试格式数据能力的研究没有考虑参数可靠性的作用,而在比较灵活性不同的模型时,参数可靠性可能至关重要。参数自抽样模拟表明,基于每种测试类型单独拟合的参数回归仅用于识别最不灵活的模型。然而,使用赤池信息准则(AIC)调整拟合优度,同时拟合两种测试类型的接收者操作特征数据,成功恢复了生成数据的真实模型。通过AIC和对实际数据的同时拟合,发现异方差信号检测模型在是/否测试和2AFC测试中提供了最佳解释。