Koyama Shinsuke, Paninski Liam
Department of Statistics and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, NY, USA.
J Comput Neurosci. 2010 Aug;29(1-2):89-105. doi: 10.1007/s10827-009-0150-x. Epub 2009 Apr 28.
A number of important data analysis problems in neuroscience can be solved using state-space models. In this article, we describe fast methods for computing the exact maximum a posteriori (MAP) path of the hidden state variable in these models, given spike train observations. If the state transition density is log-concave and the observation model satisfies certain standard assumptions, then the optimization problem is strictly concave and can be solved rapidly with Newton-Raphson methods, because the Hessian of the loglikelihood is block tridiagonal. We can further exploit this block-tridiagonal structure to develop efficient parameter estimation methods for these models. We describe applications of this approach to neural decoding problems, with a focus on the classic integrate-and-fire model as a key example.
神经科学中的许多重要数据分析问题都可以使用状态空间模型来解决。在本文中,我们描述了一些快速方法,用于在给定尖峰序列观测值的情况下,计算这些模型中隐藏状态变量的精确最大后验(MAP)路径。如果状态转移密度是对数凹的,并且观测模型满足某些标准假设,那么优化问题是严格凹的,可以使用牛顿-拉夫森方法快速求解,因为对数似然的海森矩阵是块三对角的。我们可以进一步利用这种块三对角结构来为这些模型开发有效的参数估计方法。我们描述了这种方法在神经解码问题中的应用,重点是经典的积分发放模型作为一个关键例子。