Suppr超能文献

模拟常见噪声输入对视网膜神经节细胞网络活动的影响。

Modeling the impact of common noise inputs on the network activity of retinal ganglion cells.

作者信息

Vidne Michael, Ahmadian Yashar, Shlens Jonathon, Pillow Jonathan W, Kulkarni Jayant, Litke Alan M, Chichilnisky E J, Simoncelli Eero, Paninski Liam

机构信息

Department of Applied Physics & Applied Mathematics, Center for Theoretical Neuroscience, Columbia University, New York, NY, USA.

出版信息

J Comput Neurosci. 2012 Aug;33(1):97-121. doi: 10.1007/s10827-011-0376-2. Epub 2011 Dec 29.

Abstract

Synchronized spontaneous firing among retinal ganglion cells (RGCs), on timescales faster than visual responses, has been reported in many studies. Two candidate mechanisms of synchronized firing include direct coupling and shared noisy inputs. In neighboring parasol cells of primate retina, which exhibit rapid synchronized firing that has been studied extensively, recent experimental work indicates that direct electrical or synaptic coupling is weak, but shared synaptic input in the absence of modulated stimuli is strong. However, previous modeling efforts have not accounted for this aspect of firing in the parasol cell population. Here we develop a new model that incorporates the effects of common noise, and apply it to analyze the light responses and synchronized firing of a large, densely-sampled network of over 250 simultaneously recorded parasol cells. We use a generalized linear model in which the spike rate in each cell is determined by the linear combination of the spatio-temporally filtered visual input, the temporally filtered prior spikes of that cell, and unobserved sources representing common noise. The model accurately captures the statistical structure of the spike trains and the encoding of the visual stimulus, without the direct coupling assumption present in previous modeling work. Finally, we examined the problem of decoding the visual stimulus from the spike train given the estimated parameters. The common-noise model produces Bayesian decoding performance as accurate as that of a model with direct coupling, but with significantly more robustness to spike timing perturbations.

摘要

许多研究报道,视网膜神经节细胞(RGCs)之间存在比视觉反应更快时间尺度上的同步自发放电。同步放电的两种候选机制包括直接耦合和共享噪声输入。在灵长类动物视网膜的相邻伞状细胞中,已对其快速同步放电进行了广泛研究,最近的实验工作表明,直接电耦合或突触耦合较弱,但在没有调制刺激的情况下共享突触输入较强。然而,先前的建模工作并未考虑伞状细胞群体放电的这一方面。在此,我们开发了一种纳入共同噪声影响的新模型,并将其应用于分析一个由超过250个同时记录的伞状细胞组成的大型、密集采样网络的光反应和同步放电。我们使用一种广义线性模型,其中每个细胞的放电率由时空滤波后的视觉输入、该细胞时间滤波后的先前放电以及代表共同噪声的未观察到的源的线性组合决定。该模型准确地捕捉了放电序列的统计结构和视觉刺激的编码,而无需先前建模工作中存在的直接耦合假设。最后,我们研究了在给定估计参数的情况下从放电序列解码视觉刺激的问题。共同噪声模型产生的贝叶斯解码性能与具有直接耦合的模型一样准确,但对放电时间扰动具有显著更高的鲁棒性。

相似文献

1
Modeling the impact of common noise inputs on the network activity of retinal ganglion cells.
J Comput Neurosci. 2012 Aug;33(1):97-121. doi: 10.1007/s10827-011-0376-2. Epub 2011 Dec 29.
2
Origin of correlated activity between parasol retinal ganglion cells.
Nat Neurosci. 2008 Nov;11(11):1343-51. doi: 10.1038/nn.2199. Epub 2008 Sep 28.
3
Synchronized firing in the retina.
Curr Opin Neurobiol. 2008 Aug;18(4):396-402. doi: 10.1016/j.conb.2008.09.010. Epub 2008 Oct 27.
4
The structure of large-scale synchronized firing in primate retina.
J Neurosci. 2009 Apr 15;29(15):5022-31. doi: 10.1523/JNEUROSCI.5187-08.2009.
5
The structure of multi-neuron firing patterns in primate retina.
J Neurosci. 2006 Aug 9;26(32):8254-66. doi: 10.1523/JNEUROSCI.1282-06.2006.
6
Precision of spike trains in primate retinal ganglion cells.
J Neurophysiol. 2004 Aug;92(2):780-9. doi: 10.1152/jn.01171.2003.
7
Fidelity of the ensemble code for visual motion in primate retina.
J Neurophysiol. 2005 Jul;94(1):119-35. doi: 10.1152/jn.01175.2004. Epub 2004 Dec 29.
8
Decoding visual information from a population of retinal ganglion cells.
J Neurophysiol. 1997 Nov;78(5):2336-50. doi: 10.1152/jn.1997.78.5.2336.
9
Burst-time-dependent plasticity robustly guides ON/OFF segregation in the lateral geniculate nucleus.
PLoS Comput Biol. 2009 Dec;5(12):e1000618. doi: 10.1371/journal.pcbi.1000618. Epub 2009 Dec 24.
10
Decoding of retinal ganglion cell spike trains evoked by temporally patterned electrical stimulation.
Brain Res. 2010 Aug 12;1348:71-83. doi: 10.1016/j.brainres.2010.06.044. Epub 2010 Jul 1.

引用本文的文献

1
Predicting the effect of micro-stimulation on macaque prefrontal activity based on spontaneous circuit dynamics.
Phys Rev Res. 2024 Dec;5(4). doi: 10.1103/physrevresearch.5.043211. Epub 2024 Dec 7.
2
3
Calibrating Bayesian Decoders of Neural Spiking Activity.
J Neurosci. 2024 May 1;44(18):e2158232024. doi: 10.1523/JNEUROSCI.2158-23.2024.
4
Time-varying generalized linear models: characterizing and decoding neuronal dynamics in higher visual areas.
Front Comput Neurosci. 2024 Jan 29;18:1273053. doi: 10.3389/fncom.2024.1273053. eCollection 2024.
5
Fixational Eye Movements Enhance the Precision of Visual Information Transmitted by the Primate Retina.
bioRxiv. 2024 Aug 26:2023.08.12.552902. doi: 10.1101/2023.08.12.552902.
7
Data-driven emergence of convolutional structure in neural networks.
Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2201854119. doi: 10.1073/pnas.2201854119. Epub 2022 Sep 26.
8
Connectivity Analysis for Multivariate Time Series: Correlation vs. Causality.
Entropy (Basel). 2021 Nov 25;23(12):1570. doi: 10.3390/e23121570.
9
Modelling the neural code in large populations of correlated neurons.
Elife. 2021 Oct 5;10:e64615. doi: 10.7554/eLife.64615.
10
Identification of Multiple Noise Sources Improves Estimation of Neural Responses across Stimulus Conditions.
eNeuro. 2021 Jul 6;8(4). doi: 10.1523/ENEURO.0191-21.2021. Print 2021 Jul-Aug.

本文引用的文献

1
Noise correlations improve response fidelity and stimulus encoding.
Nature. 2010 Dec 16;468(7326):964-7. doi: 10.1038/nature09570. Epub 2010 Dec 5.
2
Efficient Markov chain Monte Carlo methods for decoding neural spike trains.
Neural Comput. 2011 Jan;23(1):46-96. doi: 10.1162/NECO_a_00059. Epub 2010 Oct 21.
3
Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains.
Neural Comput. 2011 Jan;23(1):1-45. doi: 10.1162/NECO_a_00058. Epub 2010 Oct 21.
4
Functional connectivity in the retina at the resolution of photoreceptors.
Nature. 2010 Oct 7;467(7316):673-7. doi: 10.1038/nature09424.
5
Correlated firing among major ganglion cell types in primate retina.
J Physiol. 2011 Jan 1;589(Pt 1):75-86. doi: 10.1113/jphysiol.2010.193888. Epub 2010 Oct 4.
6
Population decoding of motor cortical activity using a generalized linear model with hidden states.
J Neurosci Methods. 2010 Jun 15;189(2):267-80. doi: 10.1016/j.jneumeth.2010.03.024. Epub 2010 Mar 30.
7
Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process.
J Neurophysiol. 2010 May;103(5):2912-30. doi: 10.1152/jn.00518.2009. Epub 2009 Dec 23.
8
Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods.
Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14058-62. doi: 10.1073/pnas.0906705106. Epub 2009 Jul 31.
9
A new look at state-space models for neural data.
J Comput Neurosci. 2010 Aug;29(1-2):107-126. doi: 10.1007/s10827-009-0179-x. Epub 2009 Aug 1.
10
Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models.
J Comput Neurosci. 2010 Aug;29(1-2):89-105. doi: 10.1007/s10827-009-0150-x. Epub 2009 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验